
Appendix S1. Characteristics of mechanistic and phenomenological models in ecology. A distinction is made in the literature 

between mechanistic and phenomenological models (Hilborn & Mangel 1997; Clark & Gelfand 2006; Stouffer 2010), which can be 

seen as the two ends of a continuum of ecological understanding (Clark & Gelfand 2006; Dormann et al. 2012). Mechanistic models 

are based on clearly identified biological mechanisms linked into a process based framework while phenomenological models are 

built on empirically derived statistical relationships between the variables of interest. In practice though this distinction is not that 

obvious, as what can be seen as a mechanism at one scale may be perceived as a correlative response at a lower level 

of organization (Anderson 1972). For instance, the classical Lotka-Volterra model is considered phenomenological by community 

ecologists: there is no explicit mechanism of competition (it is only approximated through the use of competition coefficients and 

density dependent growth function). However this same model, when included into biogeographic model of species distribution, is 

considered as mechanistic (Godsoe & Harmon 2012), as species interactions were initially not included into these 

phenomenological models of species distribution. The distinction between mechanistic and phenomenological is however useful as 

it helps to differentiate between the need to understand and the need to predict (i.e. explanatory vs. anticipatory predictions), 

which are not always associated in research agendas. Mechanistic models are usually considered more robust to extrapolation 

outside the range of current conditions than are phenomenological models, because the functional forms of some processes (but 

not all) are likely to be conserved (e.g., Levin 1992; Dormann et al. 2012). Here we compare the principles, assumptions, and 

limitations associated to both extremes of the continuum, using species distribution models as an example. 

 

 Mechanistic models Phenomenological models 

Principle 

 

Prediction and input are of a different nature. Known biological 
mechanisms link the two.  

Input data and predictions constitute both the input and output of the model. 
Observed patterns of species distribution are related to spatial patterns in 
environmental variables; the relationship is used to predict abundance or 
occurrences. 

Assumptions 



 

Assumptions are guided by the conceptual framework and associated 
simplification choices. They vary among models and are usually well-
defined (e.g., concerning inter- or intraspecific interactions, or the 
biological mechanisms underlying growth, fecundity or survival).  
 

Assumptions are guided by the conceptual framework (e.g., ecological niche 
estimation) and available information. The models assume that (i) observed 
spatial patterns of abundance or occurrence result from (hidden) mechanisms 
that vary with the environmental variables taken into account; (ii) environmental 
variables are relevant to define the species’ fundamental niche. (iii) the realized 
niche is representative of the fundamental niche; (iiv) the species is in quasi-
equilibrium with the environment. 

Choices left to the modeler 

Processes Which processes govern life history traits. None 

Environmental 
drivers 

Which environmental variables affect these processes? What is the 
optimal resolution of the environmental variables? What resolution is 
available? Which processes must be accounted for and which process 
might be ignored? 

Which environmental variables might indirectly affect the species’ occurrence? 
What is the optimal spatial resolution? Note that climatic data are not 
necessarily available at spatial scales matching that relevant to the niche. 

Transferability   

Within and 
among taxa 

Each model is usually defined for a small number of taxa [e.g., lizards 
(Buckley 2008) or temperate trees (Chuine & Beaubien 2001)]. 
Parameters derived at the species (e.g., Chuine & Beaubien 2001) or 
population level (Gritti et al. 2013), or for different ages (with implications 
for demography Smith, Prentice & Sykes 2001). 

The same approach can be used for any taxon. Only the set of environmental 
variables would vary. Model parameters may vary among species (e.g., 
Thuiller et al. 2011), subspecies (Pearman et al. 2010) or even SNP-variants 
(Banta et al. 2012). 

Among 
environmental 

spaces 

First principles should hold outside the environmental range used for 
calibration. Extrapolation outside the environmental range used for 
calibration may be safer than for phenomenological models, because the 
functional responses of some – but not all – processes are likely to hold 
under a wider range of environmental conditions (Dormann et al. 2012). 

Yet, the variation of particular mechanisms may not be foreseen under 
new combinations of environmental variables.  

Phenomenological models often show low transferability outside the 
environmental range used for model calibration (e.g., Heikkinen, Marmion & 
Luoto 2012). 

Validation 

 Purely mechanistic models do not use observed distributions as inputs: 
these can be used as an external validation tool.  

Some validation attempts have used long term past data (Saltré et al. 
2013). 

Usually performed using cross-validation procedure, which may over-estimate 
the predictive accuracy of the approach (Araujo et al. 2005).  

Some validation attempts have used recent past data (Araujo et al. 2005) and 
long term past data (Pearman et al. 2008). 

Ease of use 

Data availability 
Gathering data for calibrating the reaction norms of biological processes 
to environmental variables may require much time and/or money. 

Data on environmental variables and species occurrences or abundances are 
often publicly available.  

Mathematical 
skills 

Mathematical skills may be implied to formulate the model. New 
developments in statistical parameterization ask for complementary 
knowledge in inverse modeling and inferential statistic. 

Stand-alone softwares allow non-specialists to easily fit any model on their 
own, although a good knowledge of what lies behind the algorithm is strongly 
recommended. 

Implementation Model implementation may take time as they are often built from the User-friendly modeling tools have been setup (Phillips, Anderson & Schapire 



ground up.  2006; Qiao et al. 2012), most of which have been ported to R (Thuiller et al. 
2009; Hijmans et al. 2012). 

Computer time 
May be computationally intensive depending on the model and area 
considered.  

Results can be obtained within minutes or hours for a given species. 

Communication 

Replicability 
Because model implementation takes time, model code is often not open 
source (and may be patented, e.g., Porter & Mitchell 2006), thus often 
hampering result replication. 

Model outputs can be replicated due to data availability, open source code, 
and relatively low computation needs. 

Complexity 
Models may be complex and imply numerous mechanisms. Their 
complexity may be an obstacle to communication with stakeholders.  

Even though some algorithms are complex, the rationale is simple. 
Communication to stakeholders is easier.  

Models explicitly account for  

Biotic 
interactions 

Some intrinsically do (e.g., Smith, Prentice & Sykes 2001; Buckley 
2008). 

Absent from most models but can be implemented (e.g., Boulangeat, Gravel & 
Thuiller 2012).  

Dispersal Can be implemented (e.g., Saltré et al. 2013). 
Absent from most models but can be implemented (e.g., Boulangeat, Gravel & 
Thuiller 2012; Meier et al. 2012). 

Local adaptation Can be implemented (e.g., Chuine & Beaubien 2001; Gritti et al. 2013). 
Absent from most models but can be implemented (e.g., Pearman et al. 2010; 
Banta et al. 2012). 

Age structure Can be implemented (e.g., Smith, Prentice & Sykes 2001). Can be implemented (e.g., McLaughlin & Zavaleta 2012). 

Phenotypic 
plasticity 

Some intrinsically do (e.g., Chuine & Beaubien 2001; Smith, Prentice & 
Sykes 2001). 

Not explicitly accounted for, and not possible if plasticity enables persistence 
outside the environmental range used for model calibration. 

Microevolution Can be implemented (e.g., Kearney et al. 2009). Not possible 
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