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Appendix S1: Complete mathematical analysis of the model

Model basics

We consider a metapopulation consisting of an itdimumber of patches, with a
specified distribution of carrying capacities. Tach carrying capacitik represents a
number of sites within the patch, each of which lbaroccupied by a single individual.
The model obeys the following rules: (i) all indlvials have the same mortality rate
(m); (i) a dead individual is immediately replacey éither a resident or immigrant
offspring; (iii) all individuals have the same fexlity; (iv) individuals of strategyd
send a proportiom of their offspring to the propagule podl{d remain in their natal
patch); (v) a proportionc of propagules dies before reaching a randomly exnos
destination patch.

For malization of the two-type model

Computing the fithess of a rare mutant type rebesthe probability that the local
abundance of a dispersal type increases when a ideaddual is replaced. This

probability, notedv, depends on the initial abundanée ¢f type d and the carrying
capacity of the habitat patchK(). Type d increases in abundance when (i) an
individual of another type dies (probabilitfk —i)/K) and (ii) the vacant site is

colonized by typed offspring. We assume that all offspring presenthi@ patch have
an equal probability of colonizinge. each type colonizes with a probability equal $o it
local frequency. Typed will, on the other hand, decrease in abundancenvehiocal

type individual dies and is replaced by anotheetfgrobability £ ).

To tackle the problem of dispersal evolution, wensider two types (1 and 2)
competing for microsites in an ideal metapopulationsisting of an infinity of patches.
The proportion of dispersed offspring in tyges notedd, (0< d, <1). In this context,
v and 4 can be rewritten as follows, to describe the pbdlies of increase and
decrease of type 1 abundance in a patch that ngsncacapacityK :

Jx = K- @-d,)i+(@-c)d,i )
K (@-d)i+(-c)di+ (1-d,)K - 1-i )+ (e, K i)
,UiK i @-d,)(K=i)+@-c)d, (K -i) )

K (1_d1)(i _1)+ (1_Cﬂ1i + (1_d2 )0< =i )+ (1_C)jz « =i )
where v (resp. ) is the probability that the next replacement {deacruitment
event) increases (resp. decreases) the numbep@fltyndividuals in the patclg, is the
dispersal cost,i_=E[i] is the average number of type 1 individuals pecipaand
K= E[K] is the average number of microsites per patch. mhaster equation that
determines the dynamics of the probabilpp§ that a patch with carrying capacit¢
contains exacthk individuals of type 1 is as follows:
dpy

dt

=K (ViDL + AP~ O+ 0P )
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wherem is theper capita mortality rate. TheK factor (right-hand side of equation [3])
reflects the fact that deaths occur more ofteraigd patched.gé. the mortality rate is
constantper capita, not per patch). The steady state of the masteatemn can be
computed as:

. =y
P« = Po u (,UI_KJ 4)
= i+1

Two consistency relationships enter the picturestFthe probabilities that a patch with
carrying capacityK contains a certain number of individuals of typghbuld sum to 1,
l.e.:

K
OK, > pf =1 (5)
i=0
Second, the average abundance of tyge i computed as:
B K
i=> > ip‘m (6)
K i=0

with 77, being the probability that a patch has a carrgiagacity ofK .

Let P be the vector ofp) sorted asp;, pi, P, ps,... We can re-write the master

equation in a more compact way:

dP - —

—=G(i,K).P 7
™ (i,K) (7)

where G(i,K) is the matrix incorporating the effects of natal#nd mortality. This
matrix is block-diagonal because the probabilithhating k individuals from species 1
in a patch with carrying capacitg only depends on the probabilities of havigl or
k+1 individuals in a similar patch, not in patcheshwdifferent carrying capacities.
This allows us to do all calculations with a partar value of K and then to sum all of
its “parts” weighted by therz, 's. Essentially, this property can be formalized as

TG, (KR, ®)

where P, is the vector(pf, p; ..., px) of population state in a patch with carrying
capacityK andG, is the corresponding matrix block @& .

Invasibility criterion and singular strategies

A necessary and sufficient criterion for the ineasiof type 1 (the mutant) in a
metacommunity entirely occupied by type 2 (thedest) is given by (Chesson 1984;
Metz and Gyllenberg 2001):

Rn(d;,d;) >1 (9)
where R, (d,,d,) is defined as the expected number of disperseduped by a type 1

colony between its foundation and its eventual demin the absence of type 1
immigrants (Chesson 1984; Metz and Gyllenberg 200kjs expectation is the scalar
product of two vectorsA and Z, defined respectively as the vector of disperser
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production and the vector of quasi-equilibrium etatobabilities when type 1 is rare in
the metapopulation (Metz and Gyllenberg 2001).

As the dynamics of patches with different carryingpacities can be decoupled
(equation [8]), the computation of tH, criterion can be similarly simplified by first

calculating the “partial’R" quantity corresponding to patches with carryingacity
K and then summing these part@f weighted by the corresponding probability of
finding a patch with carrying capacity, 7, :

R, =D R =D (A .Z, )7, (10)

where the vectoréd\, andZ, are defined as the disperser production vectomaadi-

equilibrium state probability vector for patchedwecarrying capacityK . Both vectors
have K dimensions (one for each possible number of typedividuals present in a

patch containing at least one individual of type e valuea® of thei™ component
of vector A, is equal toid, (i.e. a patch that contains type 1 individuals produce
dispersers at a rate proportionalifo The vectorZ, is given by (Metz and Gyllenberg
2001):

Z=—Gr-Yy¢ (11)
where Y, =[1,0,0,...0] is the vector of initial state probabilities for match with
carrying capacityK just colonized by a type 1 immigrant, and mai@x is equal to
GK(O,R) without its first row and first column. The expsan for thek™ component

of Z,, z', is obtained from the value &f* (following the analogue to equation [4] at
quasi-equilibrium):

k-1 V-K
K — K i 12
Z =y I'J ( Mij (12)
However,_ when type 1 is rar'_e,:_O, and thus:
UK = K-i _ (1—d1?| _ (13)
K (1-d)i+1-d,)K-i—-1)+ 1-c)d,K
L :i_ (.1—d2)(K —-i)+ (1—.c)d2K _ (14)
K (1_d1)(| _1)+ (1_d2 )(K =1 )+ (1_C)sz
so that:
K _ ko [ K= @-d,)i
“TA ”( i+1J((1—d2)<+<—i—1)+(1—c)d£j 4o

which yields, after some algebra and using Ehdunction (extension of the factorial
function):

g (o o
k(K _k)' 1_d2 r(K -1+ (l—(i)ddzzK)

1

(16)
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The expression foiz* is obtained simply from the fact that (i) a pateith carrying

capacity K offers empty microsites with ratenK , (i) a type 1 disperser wins the

competition for an empty microsite with probabilizgx'd )(K_ll‘)i(l_c)d —, and (iii) a unique

type 1 individual dies with raten (i.e. its life span isl/ m):

= — 17
4 T, (K-D+ @-c) K &
The computation oR follows:
(1-C),K,Fy| 11~ K; 2- K =608 o g
R, (d,d;) =2 [ = ] (18)
K (1_ dz)(K _1)+ (1_Cﬁ2K
where ,F[a,b;c; 7 is the hypergeometric series, defined as:

Flabcd =Y M(a+K)r(b+K)r(c)z"
S T S T T @ () (c+ kK

Singular strategies of dispersal are found by fyitig the selection gradiente. d is a
singular strategy when (Dieckmann and Law 1996jt@Get al. 1998):

oR, =0 (19)
L od, Jdd,=d,=d

The selection gradient is computed from equation: (18

[o0R ] _« (1-dK +d(1-c)K)K
- v — K
_c3dl_dl:dz:d _K dK(l—d:d(l—c_)K) (20)
_K@+d(@-c)K)-dK®
dK(@1-d+d(1-c)K)
which yields the unique singular strategly, given by:
d°=Min| —> _1 21)
(c+y,)K

where y, = K;‘fz Is the squared coefficient of variation of carginapacities. The

constraintd <1 implies the final form of equation (21). Howevtre selection gradient

does not vanish al =d"” =1 because this is not a “true” singular strateigy éelection
on d drives it towards larger and larger values, b& $elective pressure does not
vanish onced reaches its maximum).

NB: WhenK - o, d'K still equalsl/(c+y,), i.e. the denominator in equation (20)

has a finite limit nead”, and thus the problem of findingf admits no true singularity
(the numerator in equation [20] equals O witen d”, whatever the value df).
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How isthisresult connected with classical theory on dispersal evolution?

In now classical studies on dispersal evolutioralkr 1986; Gandon and Michalakis
2001; Ajar 2003; Jansen and Vitalis 2007), dispessaccounted for as an altruistic
behavior,i.e. higher dispersal is favored by a higher relatesire@aong inhabitants of
the same patch. Classical results are obtainedghrthe concept of “inclusive fithess”
(Ajar 2003), which is a measure of fithess thatoacts for the direct and indirect
effects of a strategy/gene on its bearer’s fithessl is proportional to the selection
gradient. Evolutionary biologists attuned to inclhesfitness formulae usually expect the
expression of the inclusive fitness (or selecticadgent) to be of the following kind:

W, Db, +bF —c, (22)
where W is the inclusive fitnessh, measures direct benefits, measures indirect

benefits linked to the relatedness coefficight, among individuals within a patch, and
C, measures direct costs. Let’'s recast the selegfiadient in a patch with carrying

capacityK using the quantity = d(1-c)K / (1-d):
{ﬂ} _(@-dK +d(1-c)K)K
d,=d,=d

ad, dK(1-d+d(1-c)K)

_ K_(l—(K —1)d/(1—d)) (23)
dK 1+1

(- E )

In this equation, we can recognize the relatedrezseSfficient, F,, equal to the

probability that two random individuals in the saiepatch share the same ancestor in
this patch. Indeed, the probability that two randowlividuals are the same ig K .

When this is not the case, we can trace back tigdesancestor of each individual at
each successive death-replacement event. Wheneeeofahe two ancestors is born,
one of three things can happen: (i) its direct pliethe ancestor of the other individual

(probability equal tox, =(1-d)/[1-d)(K-1)+d (1-c)K ]); (ii) its direct parent is an
immigrant (probability equal toy, :d(l—c)R/[(l—d)(K—1)+d(1—c)R]); (iii) its
direct parent is neither an immigrant, nor the atare of the other individual
(probability z, =(1-d)(K-2)/[1-d)(K-1)+d (l—c)?]). The probability that the
two individuals have a common ancestry in the pacthus given by:

1 K-1 -
Fe=—+ X ) Z¢
K K ( K j K; KJ
1 (K—l)( 1 j
=— 4+ .
K K 1+1
Injected in equation (23), this yields:

{fﬁﬂ :(L_j{ia—(i—lj—c} (25)
od, |, ., \d@-oK |K * (K
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This equation stresses the existence of indirexefits of not competing with related
individuals, proportional tokF, / K, and costs associated with dispersal, proportional

to [(K / IZ) —1] +c, I.e. the sum of the direct dispersal cost, proportidoat, and the

cost associated to environmental heterogeneitypgutional to (K / K)—l. This last

term represents a true cost for patches larger dvenage, and a benefit for smaller
patches. In Ajar’'s (2003) formulation, equation)(2&n be rewritten as:

OR K
Ry . (——jW'F (K) (26)
adl dy=d,=d dK
1 | K K . : : : :
where W (K) = E{? Fe — (? —1] - c} is the per capita inclusive fitness

component for individuals inK -patches. If we noteE,,[X] =) X, (%)ﬂK the

average of variableX computed over all individuals from all patch typ#é. (K) can
be rewritten as:
Eoo[K] K

VVIF(K) = E@(p[K _1]

(27)

Comparison of equation (21) with the dispersal ESS found in other models

Hamilton & May (1977), Comingt al. (1980), Frank (1986), and Taylor & Frank
(1996) already tackled the issue of finding theedrsal ESS in finite populations in the
absence of carrying capacity heterogeneity. Inatteence of perturbations, this ESS is

d’ =[1+ 2cK —\/1+ 4K (K - 1)} /2cK (1+c¢). This formula is clearly different from

equation (21) in the absence of carrying capacitgriogeneity  =1/cK ), the reason
being that classical models have been studied soretie time whereas ours is in
continuous time. This small difference in initialodel assumptions creates a small
discrepancy in the ESS level for dispersal becafigbfferences in relatedness among
patch mates:
() the relatedness in non-overlapping generatiodefs with self-replacement is
(Taylor and Frank 1996; Ajar 2003):

_ [1-d+d(@-c)
[1-d +d(@-c)K]" -d*(@-cPK K - 1)

(28)

K

(i1) the relatedness obtained in our moded. (vith overlapping generations) is:
1-d+d(@-c
= (1-c) (29)
1-d+d(1-c)K

A little algebra can prove thaE, > f, , i.e. individuals living in the same patch are

more related to each other in continuous time thatiscrete time. The reason for this
is that the parent individual does not cease te &v its offspring’s birth, and hence
taking two random individuals in a patch may resultaking a parent-offspring pair in
the continuous-time model (but not in the disctetee model). This effect can also be
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modeled in a discrete-time context, provided aduitival is accounted for (Irwin and
Taylor 2000). Provided that dispersal is an altici9oehavior, higher relatedness
implies a higher ESS dispersal probability, whicplains qualitatively the apparent
discrepancy between equation (21) and earlierriggli

Conver gence stability
Convergence stability of the singular strategytitamed when (Geritet al. 1998):

4 9Ry <0 (30)
dd-|| od, 4,2,

This condition can be computed from equation (20):
(c+y2)R2[(1—c)R—1]d@—z?[(l—c)?—1]dD—R< C (31)

As long as K >1/ (-c), the product of the d-roots of
(c+ yz)Rz[(l— C)R - 1] d® - ZR[ (1-c )? - 1Jd -K are negative, so that convergence

stability of the singular strategy” is obtained when:

K[a-oK -1+ k7 a-cK -1 + 6+, K @-cK - 1

d” < — — (32)
e+ p)K*[@-0)K -1]
i.e. after some manipulations:
Kl @-oK -1] + c+p )k @-c)K -1
0<\/K [a-oK-1] + e+ @-cK -1 .

(c+p)K*[@-0)K -1]
which is true when K >1/ (1-c). When K <1/ (1-c), the discriminant of
(c+ yZ)RZ[(l—C)R —1}d2 - ZI?[ A-cK - 1}d - K is always negative since:
RZ[(l—c)R—l]z +e+y K @eK -1 =K[ @-cK-1 K*-K )< ¢ (34)
Thus, the roots of(c+ yz)Rz[(l—c)R—l]d2 - ZR[ (1—0)?— 1Jd -K are complex
and (c+y2)R2[(1—c)R—1Jd2 - ZR[ (1—c)?— 1]d -K < Cis true. The convergence

stability of d” need not be checked whéa+ y,)K <1 (i.e. when d” is forced to be 1)
given that the selection gradient insures convergetability.

Evolutionary stability
Evolutionary stability of the singular strategyoistained when (Geritat al. 1998):

2
F Fﬂ <0 (35)
adl d,=d,=d
Following equation (10), this is equivalent to:
"R
z n{ > } <0 (36)
K adl d;=d,=d
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Computation oi[%?“} Is tedious, but results in:
1 ld,=d,=d

25K 2 - dK-(@1-c)K)- 2
{a Fﬂ o KK 1 (K- (@-cK) ] _ )
od/ |, dK[1-d+d(1-c)K ][ 2(-d }+d (-c K ]
The condition of evolutionary stability is then:
2K(K-1)|d(K - (1-c)K)-2
S (K-DdK-@ecK)-2 8)

< dR[l—d +d(1—c)R][2(1—d y+d (-c )?]

K3-3K2 K+2K

(=)

Using the standardized skewnegs= , and squared coefficient of variation

K2_—2 .. .
KRZK this is equivalent to:

V.=

<2y112 (CK 1) ;112 C(RR_l)y;” (39)

when (c+y2)K >1 (cf. equation [21]). When(c+ yZ)R<1, evolutionary stability is

always achieved becaust’'=1 is not an analytical extremum of the fitness fiowt
but rather due to trait constraint.

If we now look for conditions of disruptive selemt, we can combine the opposite
inequality of equation (39) with the conditic(n+y2)R >1. Disruptive selection then
occurs when

L= 21,7+, IK

1
=_y2<C< —]12+K_1 32

K V2 2

(40)

This means that a moderate cost of dispersal isinegtjfor disruptive selection. When

K is sufficiently large, this equation practicallyeems thatc must obey an upper
bound inequality:

<(y3_2y1212jy§/2

1+y,

(41)

From this last inequality, we deduce a sufficietitecion for disruptive selection at high

K:
c _[ys_zylzjzjygz
e 1+y,

>1 (42)

Criterion (42) is very practical since we can comepiti without knowing the particular
density of microsites per unit area. Indeed, if waly have information on the
distribution of patch areas, we can use criteridf) (to check whether disruptive
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selection on dispersal can occur due to patch assenmetry, sincey, and y, are
dimensionless.

A lower bound on skewness and some implications

Consider a discrete positive stochastic variablewith mean valueX . The application
of Cauchy-Schwarz’s inequality states that:

x22< X3 X (43)
with equality when variableX takes only one value. Taking = K and remembering

that y, 2% and y, = =22 e obtain a lower bound op given by:

(P_RZ)M ’

A 2 (44)

The differenceD, between the upper and lower bounds fpreading to the existence
of an ESS singular strategy Wheyg>(1—cR)/R (equations [39] and [44]) is given
by: B _

1+c)K-1) _ cK-1) _
D3=y]212+(( % ) 2]12+ (R )y232 (45)

When K >1/c, the condition y2>(1—cR)/R is always true. In that case, the
asymptotic behavior oD, when y, is near 0 depends on the valuelof-1 (equation
[45]), which is positivej.e. D, becomes infinitely positive (and thus there iE=36 at
that limit). When1<K <1/c, the conditiony, <(1-cK)/K is verified for very low
values of y,. At this point, the singular value al has a non-vanishing selection
gradient, and thus there is an ESS at that limiteldj, tends towards infinityD, is of
order y,?, i.e. of the same order as the lower bound pnimposed by Cauchy-

Schwarz’s inequality (equation [44]). A distributiovith a largey, and y, >2y;?
always implies the existence of an evolutionaryhnbhéng point.

Interpretation of inequality (39) in termsof inclusive fithess
After some algebraic manipulations, inequality (88h be rewritten as:

RIS A (AS TS (6)

The left-hand side term can be identified as:

(22 + v, (1-1,) JK” = Var, [K] (47)
whereas the right-hand side terms are given by:
e _E[K-1]

(C"'Vz)(l"'yz_%jK == (48)
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Injecting equations (47) and (48) into inequaldy) yields the following equivalent to
inequality (39):

. Var p[K] 49)
E k-1
We can go one step further by noting that (fromagiga [27]):
Var,, [W (K)]= Ve, [K] (50)
A Eop [K -1

We now have the final form of inequality (39)’'s @plent in terms of inclusive fitness:
Eep [K —1] Var,, [W, (K)]<1 (51)

or, in other words, when selection is not diredciof.e. (c+y2)R >1), selection is
stabilizing if, and only if, the grand average nwnbof intra-patch neighbors
(E@@[K —1]) times the dispersal rate at the singular stratéigyes the variance in

individual inclusive fitness, does not exceed unity
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Appendix S2: Application of the model to geometric distributions

We consider a geometric distribution of carryingaeities defined by parametgr
(0< p<1):

. = p(d-p)** (52)

The moments of this distribution can be computed:

K=1/p (53)

1z =1- p (54)
2_

y, =——E (55)
1-p

These moments allow the computation of the ESSrwit (equation [39]) when
>(1—CK)/K i.e. 2p<1+C'

<P < 2Jyl-p+——+——= (56)
. 1 1_
e
p<c (57)

If p<c, then there is an ESS. Wher p<(1+c)/ 2, there is disruptive selection on
dispersal. Forp > (1+c)/ 2, the singular dispersal value becomes 1 and ESf. For
most values of parametep, disruptive selection occurs rather whenis low than
when it is high € =0 maximizes the width of thg -window for disruptive selection).
Conversely, p =1/ 2 maximizes the width of the-window that allows for disruptive
selection to take place.
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Appendix S3: Accounting for demographic stochasticity

Our model is explicitly based on the assumptiont g#ech death event is immediately
followed by a replacement event. Thus, local pajpang are immune to demographic
stochasticity since their population sizes are gbvagual to their carrying capacities.
Here, we describe a more general formulation of rttwelel, which encompasses the
model described in the main text and in AppendixaBd a whole class of recruitment-
limited lottery models.

Let us begin with the description of a monomorphietapopulation with dispersal rate
d. We notem andb theper capita mortality and birth rates, respectively, apgd, is the

probability that a patch (with carrying capacky contains exactlk individuals. The
master equation describing the dynamicgpf is given by:

P {152 (1) (k=3 +d (10K P+ + 3 B

dt
_{b(l_%j[(l_d) k+d(1-c)k |+ mk} Pk

wherek is the average number of individuals per patctr tve whole metapopulation.

(58)

Equation (58) is based on the following rules:

offspring are produced at a rdtte

offspring disperse with probability,

dispersing offspring disperse to any patch (glalispersal);

dispersing offspring die with probability

any offspring trying to settle in a patch with gang capacityK and current

agrwnhE

populationk has a probabilit;l—% of succeeding;

6. any unsuccessful offspring dies;

7. settled individuals die at rate.
Note that “a procesX happens at raté’ means that the proce¥sis a random Poisson
process with ratg, i.e. that the probability oK happening during an infinitesimal time
intervaldt is x.dt.

When b /m - o, the process described by equation (58) is eqemtao the model
described in the main text and in Appendix S1. Whemn is finite, demographic
stochasticity can play a role in the dynamics @& thetapopulation. Contrary to the
model presented in the main text, the adaptive mycsof d associated with equation
(58) cannot be written in a compact way, mostlydouse the resident phenotype’s
abundance distribution has to be found togetheh thie value ofk and also because
the transition matrixc becomes much bigger than in the previous model.

To assess the robustness of our conclusions toe#tistence a small dose of

demographic stochasticity, we ran simulations itaradscape of patches following a
truncated geometric distribution and settimgm =100 (see main text). As explained in

13/17



Skewed patch sizes and dispersal evolution — Sopgitary Information

the Results section, the main differences betwdertulations with and without
demographic stochasticity are seen under disrupglection regimes and concern
drifter types. Essentially, demographic stochastidisfavours drifters because drifters
are less efficient than dwellers in terms of bndke (drifters lose a significant fraction
of their offspring due to dispersal cost). In theegence of local demographic
stochasticity, this features can cause total etitinof drifter lineages (see e.g. on Fig.
S3a). This in turn drives a transient directionalestion regime on dwellers and
afterwards triggers another evolutionary branctand the reformation of an equivalent
drifter type. This effect does not change the itistron of dispersal types when
observed over a long time scale (Fig S3b).
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Appendix $4: Computing the plastic ESS

In this appendix, we assume that dispersal is iplase. that dispersal cannot be
described through a single parametdr, but through a functiond(K), giving the

optimal dispersal rate for offspring born in a pateith carrying capacityK. The
formula given in Discussion for the ESS of plastispersal strategy results from the
following reasoning.

For an individual living in &-patch, the selection gradient a{K) is (equations [20]

and [23] in Appendix S1):

{ OR" } _(1=d(K)K + (1-c)d (K)K K
ad, (K) ak)=a,=ay  G(K)K@A=d(K)+(1-c)d (K)K)

The rationale behind this equation is that the ayelimmigrant pressure (dispersal cost

notwithstanding) is changing frordK (in the non-plastic model) tal(K)K (in the
condition-dependent dispersal model).

(59)

Solving equation (59) at the singular strateigg (eft-hand side equal to 0), we obtain

d(K)K =1+ (1-c)d (K)K (60)
and thus, averaging over patch types:
d(K)K =1/c¢ (61)
Plugging equation (61) into equation (60), we fiynglet:
1
d(K)=— 62
(K) -~ (62)

in accordance with the formula given in Discussion.

It is reassuring to note that this equation dodsgoocagainst some simple intuitions on
plastic dispersal:

0] individuals in large patches should disperse lbss tindividuals in
small patches (because intra-patch relatednesswerlin larger
patches);

(i) having some clues as to the distribution of paizkssremoves the

selective pressure against dispersal due to risksan {.e. the term
proportional toy, in main text equation [3]).

Interestingly, there are more migrants circulatengong patches in the model that
includes plasticity than in the model developedh@ paper (compare equation [61] vs.

d K =1/(c+y,) when inequality [4] is satisfied).
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Fig. S1. Simulation results fop = 0.2 (example of stabilizing selection on dispérs
(a) Distribution of dispersal levelsl(ordinates) at different times during the simwlati
(steps, abscissas). Darker shades indicate a higbguency of the corresponding
dispersal level.d) Frequency distribution of dispersal leved$ \when averaged over the
last 200 records (between the 40,00050@hd 80,000,000steps).
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Fig. S2. Simulation results fop = 0.5 (example of disruptive selection on dispi¢r¢a)
Distribution of dispersal leveld( ordinates) at different times during the simwlati
(steps, abscissas). Darker shades indicate a higbguency of the corresponding
dispersal level.H) Frequency distribution of dispersal leved$ \when averaged over the
last 200 records (between the 40,00050@hd 80,000,000steps).
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Fig. S3. Simulation results fop = 0.5 with demographic stochasticity) (Distribution
of dispersal levelsd{ ordinates) at different times during the simulati(steps,
abscissas). Darker shades indicate a higher freguehthe corresponding dispersal

level. (o) Frequency distribution of dispersal levealy when averaged over the last 200
records (between the 40,000,80and 80,000,000steps).
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