
Skewed patch sizes and dispersal evolution – Supplementary Information 

1/17 

Asymmetric patch size distribution leads to disruptive selection 
on dispersal 
 
François Massol, Anne Duputié, Patrice David, Philippe Jarne 
 
 
 
 
APPENDIX S1: COMPLETE MATHEMATICAL ANALYSIS OF THE MODEL ........... 2 

MODEL BASICS.......................................................................................................................... 2 
FORMALIZATION OF THE TWO-TYPE MODEL............................................................................. 2 
INVASIBILITY CRITERION AND SINGULAR STRATEGIES............................................................. 3 
HOW IS THIS RESULT CONNECTED WITH CLASSICAL THEORY ON DISPERSAL EVOLUTION? ..... 6 
COMPARISON OF EQUATION (21) WITH THE DISPERSAL ESS FOUND IN OTHER MODELS.......... 7 
CONVERGENCE STABILITY........................................................................................................ 8 
EVOLUTIONARY STABILITY ....................................................................................................... 8 
A LOWER BOUND ON SKEWNESS AND SOME IMPLICATIONS.................................................... 10 
INTERPRETATION OF INEQUALITY (39) IN TERMS OF INCLUSIVE FITNESS............................... 10 
REFERENCES........................................................................................................................... 11 

APPENDIX S2: APPLICATION OF THE MODEL TO GEOMETRIC DISTRIBUTIONS
..................................................................................................................................................... 12 
APPENDIX S3: ACCOUNTING FOR DEMOGRAPHIC STOCHASTICITY ................. 13 
APPENDIX S4: COMPUTING THE PLASTIC ESS............................................................ 15 

 
FIG. S1: SIMULATION RESULTS FOR p = 0.2 (EXAMPLE OF STABILIZING SELECTION ON 

DISPERSAL) ...............................................................................................................................16 
FIG. S2. SIMULATION RESULTS FOR p = 0.5 (EXAMPLE OF DISRUPTIVE SELECTION ON 

DISPERSAL)................................................................................................................................16 
FIG. S3. SIMULATION RESULTS FOR p = 0.5 WITH DEMOGRAPHIC STOCHASTICITY...................17 

 



Skewed patch sizes and dispersal evolution – Supplementary Information 

2/17 

Appendix S1: Complete mathematical analysis of the model 

Model basics 
We consider a metapopulation consisting of an infinite number of patches, with a 
specified distribution of carrying capacities. The patch carrying capacity K  represents a 
number of sites within the patch, each of which can be occupied by a single individual. 
The model obeys the following rules: (i) all individuals have the same mortality rate 
( m ); (ii) a dead individual is immediately replaced by either a resident or immigrant 
offspring; (iii) all individuals have the same fecundity; (iv) individuals of strategy d  
send a proportion d  of their offspring to the propagule pool (1 d−  remain in their natal 
patch); (v) a proportion c  of propagules dies before reaching a randomly chosen 
destination patch.  

Formalization of the two-type model 
Computing the fitness of a rare mutant type relies on the probability that the local 
abundance of a dispersal type increases when a dead individual is replaced. This 
probability, noted K

iν , depends on the initial abundance (i ) of type d  and the carrying 

capacity of the habitat patch (K ). Type d  increases in abundance when (i) an 
individual of another type dies (probability ( )K i K− / ) and (ii) the vacant site is 
colonized by type d  offspring. We assume that all offspring present in the patch have 
an equal probability of colonizing, i.e. each type colonizes with a probability equal to its 
local frequency. Type d  will, on the other hand, decrease in abundance when a focal 
type individual dies and is replaced by another type (probability K

iµ ). 

 
To tackle the problem of dispersal evolution, we consider two types (1 and 2) 
competing for microsites in an ideal metapopulation consisting of an infinity of patches. 
The proportion of dispersed offspring in type s  is noted sd ( 0 1sd≤ ≤ ). In this context,  

K
iν  and K

iµ  can be rewritten as follows, to describe the probabilities of increase and 

decrease of type 1 abundance in a patch that has carrying capacity K : 

1 1

1 1 2 2

(1 ) (1 )

(1 ) (1 ) (1 )( 1 ) (1 ) ( )
K
i

d i c d iK i

K d i c d i d K i c d K i
ν − + −−=

− + − + − − − + − −
  (1) 

2 2

1 1 2 2

(1 )( ) (1 ) ( )

(1 )( 1) (1 ) (1 )( ) (1 ) ( )
K
i

d K i c d K ii

K d i c d i d K i c d K i
µ − − + − −=

− − + − + − − + − −
   (2) 

where K
iν  (resp. K

iµ ) is the probability that the next replacement (death-recruitment 

event) increases (resp. decreases) the number of type 1 individuals in the patch, c  is the 

dispersal cost, E[ ]i i=  is the average number of type 1 individuals per patch, and 

E[ ]K K=  is the average number of microsites per patch. The master equation that 

determines the dynamics of the probability K
kp  that a patch with carrying capacity K  

contains exactly k  individuals of type 1 is as follows:  

1 1 1 1 ( )
K

K K K K K K Kk
k k k k k k k

dp
mK p p p

dt
ν µ ν µ 
 − − + + 

= + − +      (3) 
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where m  is the per capita mortality rate. The K  factor (right-hand side of equation [3]) 
reflects the fact that deaths occur more often in large patches (i.e. the mortality rate is 
constant per capita, not per patch). The steady state of the master equation can be 
computed as: 

1

0
0 1

Kk
K K i
k K

i i

p p
ν
µ

−

= +

 
=  

 
∏          (4) 

 
Two consistency relationships enter the picture. First, the probabilities that a patch with 
carrying capacity K  contains a certain number of individuals of type 1 should sum to 1, 
i.e.:  

0

1
K

K
i

i

K p
=

∀ , =∑          (5) 

Second, the average abundance of type 1, i , is computed as: 

0

K
K
i K

K i

i ip π
=

=∑∑          (6) 

with Kπ  being the probability that a patch has a carrying capacity of K .  

 
Let P  be the vector of K

kp  sorted as 1 1 2 2
0 1 0 1p p p p, , , , ...  We can re-write the master 

equation in a more compact way: 

( )
d

i K
dt

= , .P
G P          (7) 

where ( )i K,G  is the matrix incorporating the effects of natality and mortality. This 
matrix is block-diagonal because the probability of having k  individuals from species 1 
in a patch with carrying capacity K  only depends on the probabilities of having 1k −  or 

1k +  individuals in a similar patch, not in patches with different carrying capacities. 
This allows us to do all calculations with a particular value of K  and then to sum all of 
its “parts” weighted by the Kπ ’s. Essentially, this property can be formalized as: 

( )K
K K

d
i K

dt
= , .P

G P          (8) 

where KP  is the vector 0 1( )K K K
Kp p p, ,...,  of population state in a patch with carrying 

capacity K  and KG  is the corresponding matrix block in G . 

 

Invasibility criterion and singular strategies 
A necessary and sufficient criterion for the invasion of type 1 (the mutant) in a 
metacommunity entirely occupied by type 2 (the resident) is given by (Chesson 1984; 
Metz and Gyllenberg 2001): 

1 2( ) 1mR d d, >           (9) 

where 1 2( )mR d d,  is defined as the expected number of dispersers produced by a type 1 

colony between its foundation and its eventual demise in the absence of type 1 
immigrants (Chesson 1984; Metz and Gyllenberg 2001). This expectation is the scalar 
product of two vectors, A  and Z , defined respectively as the vector of disperser 
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production and the vector of quasi-equilibrium state probabilities when type 1 is rare in 
the metapopulation (Metz and Gyllenberg 2001).  
 
As the dynamics of patches with different carrying capacities can be decoupled 
(equation [8]), the computation of the mR  criterion can be similarly simplified by first 

calculating the “partial” K
mR  quantity corresponding to patches with carrying capacity 

K  and then summing these partial KmR  weighted by the corresponding probability of 

finding a patch with carrying capacity K , Kπ : 

( )K
m m K K K K

K K

R R π π= = .∑ ∑ A Z        (10) 

where the vectors KA  and KZ  are defined as the disperser production vector and quasi-

equilibrium state probability vector for patches with carrying capacity K . Both vectors 
have K  dimensions (one for each possible number of type 1 individuals present in a 
patch containing at least one individual of type 1). The value K

ia  of the thi  component 

of vector KA  is equal to 1id  (i.e. a patch that contains i  type 1 individuals produce 

dispersers at a rate proportional to i ). The vector KZ  is given by (Metz and Gyllenberg 

2001):  
�

1
K KK

−= − .Z YG          (11) 

where [1 0 0 0]K = , , , ...Y  is the vector of initial state probabilities for a patch with 

carrying capacity K  just colonized by a type 1 immigrant, and matrix � KG  is equal to 

(0 )K K,G  without its first row and first column. The expression for the thk  component 

of KZ , K
kz , is obtained from the value of 1

Kz  (following the analogue to equation [4] at 

quasi-equilibrium):  
1

1
1 1

Kk
K K i
k K

i i

z z
ν
µ

−

= +

 
=  

 
∏          (12) 

 

However, when type 1 is rare, 0i = , and thus: 

1

1 2 2

(1 )

(1 ) (1 )( 1) (1 )
K
i

d iK i

K d i d K i c d K
ν −−=

− + − − − + −
     (13) 

2 2

1 2 2

(1 )( ) (1 )

(1 )( 1) (1 )( ) (1 )
K
i

d K i c d Ki

K d i d K i c d K
µ − − + −=

− − + − − + −
     (14) 

so that: 
1

1
1

1 2 2

(1 )

1 (1 )( 1) (1 )

k
K K
k

i

d iK i
z z

i d K i c d K

−

=

 −− =   + − − − + −  
∏     (15) 

which yields, after some algebra and using the Γ  function (extension of the factorial 
function): 

( )
( )

2

2

2

2

(1 )1
1

1
1 (1 )

2 1

1( 1)

( ) 1 1

c d Kk
dK K

k c d K
d

K kdK
z z

k K k d K

−−
−

−
−

Γ − + −− !=  − ! − Γ − + 
     (16) 
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The expression for 1
Kz  is obtained simply from the fact that (i) a patch with carrying 

capacity K  offers empty microsites with rate mK , (ii) a type 1 disperser wins the 
competition for an empty microsite with probability 

2 2

1
(1 )( 1) (1 )

c
d K c d K

−
− − + −

, and (iii) a unique 

type 1 individual dies with rate m  (i.e. its life span is 1 m/ ):  

1

2 2

(1 )

(1 )( 1) (1 )
K c K

z
d K c d K

−=
− − + −

       (17) 

 
The computation of mR  follows: 

2 1

2 2

(1 ) 1
1 2 1 1 1

1 2

2 2

(1 ) 1 1 2
( )

(1 )( 1) (1 )

c d K d
Kd d

m
K

c d K F K K
R d d

d K c d K

π− −
− −

 − , − ; − − ;
 , =

− − + −∑    (18) 

where 2 1[ ]F a b c z, ; ;  is the hypergeometric series, defined as: 

2 1
0

( ) ( ) ( )
[ ]

( ) ( ) ( )

k

k

a k b k c z
F a b c z

a b c k k

∞

=

Γ + Γ + Γ, ; ; =
Γ Γ Γ + !∑  

 
Singular strategies of dispersal are found by nullifying the selection gradient, i.e. d  is a 
singular strategy when (Dieckmann and Law 1996; Geritz et al. 1998): 

1 2
1

0m

d d d

R

d
= =

 ∂ = ∂ 
         (19) 

The selection gradient is computed from equation (18): 

1 2
1

2

(1 (1 ) )

(1 (1 ) )

(1 (1 ) )

(1 (1 ) )

m
K

Kd d d

R dK d c K K

d d K d d c K

K d c K d K

d K d d c K

π
= =

 ∂ − + −= ∂ − + − 

+ − −=
− + −

∑
      (20) 

which yields the unique singular strategy, d ∗  given by: 

( )2

1
Min 1d

c Kγ
∗

 
= , 

+  
        (21) 

where 
2 2

22
K K

K
γ −=  is the squared coefficient of variation of carrying capacities. The 

constraint 1d ≤  implies the final form of equation (21). However, the selection gradient 
does not vanish at 1d d ∗= =  because this is not a “true” singular strategy (i.e. selection 
on d  drives it towards larger and larger values, but the selective pressure does not 
vanish once d  reaches its maximum). 
 
NB: When K → ∞ , *d K  still equals 21 / ( )c γ+ , i.e. the denominator in equation (20) 

has a finite limit near *d , and thus the problem of finding *d  admits no true singularity 
(the numerator in equation [20] equals 0 when *d d= , whatever the value of K ). 
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How is this result connected with classical theory on dispersal evolution? 
In now classical studies on dispersal evolution (Frank 1986; Gandon and Michalakis 
2001; Ajar 2003; Jansen and Vitalis 2007), dispersal is accounted for as an altruistic 
behavior, i.e. higher dispersal is favored by a higher relatedness among inhabitants of 
the same patch. Classical results are obtained through the concept of “inclusive fitness” 
(Ajar 2003), which is a measure of fitness that accounts for the direct and indirect 
effects of a strategy/gene on its bearer’s fitness, and is proportional to the selection 
gradient. Evolutionary biologists attuned to inclusive fitness formulae usually expect the 
expression of the inclusive fitness (or selection gradient) to be of the following kind: 

0 1 0IFW b b F c∝ + −          (22) 

where IFW  is the inclusive fitness, 0b  measures direct benefits, 1b  measures indirect 

benefits linked to the relatedness coefficient, F , among individuals within a patch, and 

0c  measures direct costs. Let’s recast the selection gradient in a patch with carrying 

capacity K  using the quantity (1 ) (1 )I d c K d= − / − : 

1 2
1

(1 (1 ) )

(1 (1 ) )

( 1) (1 )
1

1

1 1 1
1

1 1

K
m

d d d

R dK d c K K

d d K d d c K

K K d d

Id K

K K I

d c IK K

= =

 ∂ − + −= ∂ − + − 

− / − = − + 

 −       = −       − +       

    (23) 

 
 
In this equation, we can recognize the relatedness coefficient, KF , equal to the 

probability that two random individuals in the same K -patch share the same ancestor in 
this patch. Indeed, the probability that two random individuals are the same is 1K/ . 
When this is not the case, we can trace back the single ancestor of each individual at 
each successive death-replacement event. Whenever one of the two ancestors is born, 
one of three things can happen: (i) its direct parent is the ancestor of the other individual 

(probability equal to (1 ) [(1 )( 1) (1 ) ]Kx d d K d c K= − / − − + − ); (ii) its direct parent is an 

immigrant (probability equal to (1 ) [(1 )( 1) (1 ) ]Ky d c K d K d c K= − / − − + − ); (iii) its 

direct parent is neither an immigrant, nor the ancestor of the other individual 

(probability (1 )( 2) [(1 )( 1) (1 ) ]Kz d K d K d c K= − − / − − + − ). The probability that the 

two individuals have a common ancestry in the patch is thus given by: 

0

1 1

1 1 1

1

p
K K K

p

K
F x z

K K

K

K K I

 ∞
 
 
 
 = 

− = +  
 

−  = +   +  

∑
        (24) 

 
Injected in equation (23), this yields: 

1 2
1

1
(1 )

K
m

K

d d d

R K K K
F c

d d c K K K= =

  ∂   = − − −     ∂ −      
     (25) 
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This equation stresses the existence of indirect benefits of not competing with related 
individuals, proportional to /KKF K , and costs associated with dispersal, proportional 

to ( )[ ]/ 1K K c− + , i.e. the sum of the direct dispersal cost, proportional to c , and the 

cost associated to environmental heterogeneity, proportional to ( ) 1/K K − . This last 

term represents a true cost for patches larger than average, and a benefit for smaller 
patches. In Ajar’s (2003) formulation, equation (25) can be rewritten as: 

1 2
1

( )
K

d

IF
m

d d

R K
W K

d d K= =

 ∂  =   ∂   
       (26) 

where 1
1

( )
1I KF

K K
F c

K K
W K

c

  − − −  
 

=
−

 is the per capita inclusive fitness 

component for individuals in K -patches. If we note [ ]E Kexp KK

K
X X π =  

 
∑  the 

average of variable X  computed over all individuals from all patch types, ( )IFW K can 

be rewritten as: 
[ ]
[ ]

E

1
( )

E
exp

IF
exp

K

K
W K

K
=

−
−

        (27) 

Comparison of equation (21) with the dispersal ESS found in other models 
Hamilton & May (1977), Comins et al. (1980), Frank (1986), and Taylor & Frank 
(1996) already tackled the issue of finding the dispersal ESS in finite populations in the 
absence of carrying capacity heterogeneity. In the absence of perturbations, this ESS is 

* 21 2 /1 4 ( 1) 2 (1 )c K Kd cK cK c = + − +


+ −


. This formula is clearly different from 

equation (21) in the absence of carrying capacity heterogeneity ( * 1/d cK= ), the reason 
being that classical models have been studied in discrete time whereas ours is in 
continuous time. This small difference in initial model assumptions creates a small 
discrepancy in the ESS level for dispersal because of differences in relatedness among 
patch mates: 

(i) the relatedness in non-overlapping generation models with self-replacement is 
(Taylor and Frank 1996; Ajar 2003): 

[ ]
[ ]

2

2 2 2

1 (1 )

1 (1 ) (1 ) ( 1)
K

d d c
f

d d c K d c K K

− + −
=

− + − − − −
     (28) 

 
(ii) the relatedness obtained in our model (i.e. with overlapping generations) is: 
1 (1 )

1 (1 )K

d d c
F

d d c K

− + −=
− + −

        (29) 

 
A little algebra can prove that K KF f> , i.e. individuals living in the same patch are 

more related to each other in continuous time than in discrete time. The reason for this 
is that the parent individual does not cease to live at its offspring’s birth, and hence 
taking two random individuals in a patch may result in taking a parent-offspring pair in 
the continuous-time model (but not in the discrete-time model). This effect can also be 
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modeled in a discrete-time context, provided adult survival is accounted for (Irwin and 
Taylor 2000). Provided that dispersal is an altruistic behavior, higher relatedness 
implies a higher ESS dispersal probability, which explains qualitatively the apparent 
discrepancy between equation (21) and earlier findings. 

Convergence stability 
Convergence stability of the singular strategy is obtained when (Geritz et al. 1998): 

1 2
1

0m

d d d

Rd

dd d ∗
∗

= =

  ∂
  <  ∂  

        (30) 

 
This condition can be computed from equation (20): 

2 2
2( ) (1 ) 1 2 (1 ) 1 0c c K d K c K d KKγ ∗ ∗   + − − − − − − <       (31) 

 

As long as 1 (1 )K c> / − , the product of the d -roots of 
2 2

2( ) (1 ) 1 2 (1 ) 1c c K d K c K d KKγ    + − − − − − −     are negative, so that convergence 

stability of the singular strategy d ∗  is obtained when: 
22 3

2

2
2

(1 ) 1 (1 ) 1 ( ) (1 ) 1

( ) (1 ) 1

K c K c K c c KK K
d

c c KK

γ

γ
∗

     − − + − − + + − −     <
 + − − 

  (32) 

i.e. after some manipulations:  
22 3

2

2
2

(1 ) 1 ( ) (1 ) 1
0

( ) (1 ) 1

c K c c KK K

c c KK

γ

γ

   − − + + − −   <
 + − − 

     (33) 

which is true when 1 (1 )K c> / − . When 1 (1 )K c< / − , the discriminant of 
2 2

2( ) (1 ) 1 2 (1 ) 1c c K d K c K d KKγ    + − − − − − −     is always negative since: 
22 3 2

2(1 ) 1 ( ) (1 ) 1 (1 ) 1 ( ) 0c K c c K K c K K KK Kγ     − − + + − − = − − − <       (34) 

Thus, the roots of 2 2
2( ) (1 ) 1 2 (1 ) 1c c K d K c K d KKγ    + − − − − − −     are complex 

and 2 2
2( ) (1 ) 1 2 (1 ) 1 0c c K d K c K d KKγ    + − − − − − − <     is true. The convergence 

stability of d ∗  need not be checked when 2( ) 1c Kγ+ <  (i.e. when d ∗  is forced to be 1) 

given that the selection gradient insures convergence stability.  

Evolutionary stability 
Evolutionary stability of the singular strategy is obtained when (Geritz et al. 1998): 

1 2

2

2
1

0m

d d d

R

d
= =

 ∂ < ∂ 
         (35) 

Following equation (10), this is equivalent to: 

1 2

2

2
1

0
K
m

K
K d d d

R

d
π

= =

 ∂ < ∂ 
∑         (36) 
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Computation of 
2

2
1

1 2

K
mR

d d d d

∂
∂ = =

 
 

 is tedious, but results in: 

2

2
1

2 ( 1) ( (1 ) ) 2

1 (1 ) 2(1 ) (1 )

K
m

d

K K d K c KR

d d K d d c K d d c K

 − − − − ∂  = ∂    − + − − + −     

    (37) 

 
The condition of evolutionary stability is then: 

2 ( 1) ( (1 ) ) 2
0

1 (1 ) 2(1 ) (1 )
K

K

K K d K c K

d K d d c K d d c K
π

 − − − −  <
   − + − − + −   

∑     (38) 

 

Using the standardized skewness 
( )

3 2 3

3 2
2 2

3 2
3

K K K K

K K

γ /
− +

−
= , and squared coefficient of variation 

2 2

22
K K

K
γ −= , this is equivalent to: 

1 2 1 2 3 2
3 2 2 2

( 1) ( 1)
2

cK c K

K K
γ γ γ γ/ − / − /− −< + +       (39) 

when 2( ) 1c Kγ+ >  (cf. equation [21]). When 2( ) 1c Kγ+ < , evolutionary stability is 

always achieved because 1d ∗ =  is not an analytical extremum of the fitness function, 
but rather due to trait constraint. 
 
 
If we now look for conditions of disruptive selection, we can combine the opposite 

inequality of equation (39) with the condition 2( ) 1c Kγ+ > . Disruptive selection then 

occurs when 
1 2 1 2

3 2 2
2 1 2 3 21

2 2

21
K
K

K
c

K

γ γ γγ
γ γ

/ − /

− / − /−

− + /− < <
+

       (40) 

 
This means that a moderate cost of dispersal is required for disruptive selection. When 

K  is sufficiently large, this equation practically means that c  must obey an upper 
bound inequality: 

1 2 3 2
3 2 2

2

2

1
c

γ γ γ
γ

/ / 
 
 

−
<

+
         (41) 

 
From this last inequality, we deduce a sufficient criterion for disruptive selection at high 
K : 

1 2 3 2
3 2 2

2

2
1

1maxc
γ γ γ

γ

/ / 
 
 

−
= >

+
        (42) 

 
Criterion (42) is very practical since we can compute it without knowing the particular 
density of microsites per unit area. Indeed, if we only have information on the 
distribution of patch areas, we can use criterion (40) to check whether disruptive 
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selection on dispersal can occur due to patch size asymmetry, since 2γ  and 3γ  are 

dimensionless.  

A lower bound on skewness and some implications 

Consider a discrete positive stochastic variable X , with mean value X . The application 
of Cauchy-Schwarz’s inequality states that: 

2 32 X XX ≤ .           (43) 

with equality when variable X  takes only one value. Taking X K=  and remembering 

that 
2 2

22
K K

K
γ −=  and 

( )
3 2 3

3 2
2 2

3 2
3

K K K K

K K

γ /
− +

−
= , we obtain a lower bound on 3γ  given by: 

1 2 1 2
2 2 3γ γ γ/ − /− ≤          (44) 

 
The difference 3D  between the upper and lower bounds for 3γ  leading to the existence 

of an ESS singular strategy when 2 (1 )cK Kγ > − /  (equations [39] and [44]) is given 

by: 

1 2 1 2 3 2
3 2 2 2

((1 ) 1) ( 1)c K c K
D

K K
γ γ γ/ − / − /+ − −= + +      (45) 

 

When 1K c> / , the condition 2 (1 )cK Kγ > − /  is always true. In that case, the 

asymptotic behavior of 3D  when 2γ  is near 0 depends on the value of 1K −  (equation 

[45]), which is positive, i.e. 3D  becomes infinitely positive (and thus there is an ESS at 

that limit). When 1 1K c< < / , the condition 2 (1 )cK Kγ < − /  is verified for very low 

values of 2γ . At this point, the singular value of d  has a non-vanishing selection 

gradient, and thus there is an ESS at that limit. When 2γ  tends towards infinity, 3D  is of 

order 1 2
2γ / , i.e. of the same order as the lower bound on 3γ  imposed by Cauchy-

Schwarz’s inequality (equation [44]). A distribution with a large 2γ  and 1 2
3 22γ γ />  

always implies the existence of an evolutionary branching point.  
 

Interpretation of inequality (39) in terms of inclusive fitness 
After some algebraic manipulations, inequality (39) can be rewritten as: 

( ) ( )2 23/2
2 2 2 2 23

1
1 1c

K
K Kγ γ γ γ γγ   + − < + + −    

     (46) 

 
The left-hand side term can be identified as: 

( ) [ ]23

23/2
2 21 VarexpK Kγ γ γ γ + − =        (47) 

whereas the right-hand side terms are given by: 

( ) [ ]2

2 2 *

11
1

Eexp

K

K
c K

d
γ γ

− + + − = 
 

      (48) 
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Injecting equations (47) and (48) into inequality (46) yields the following equivalent to 
inequality (39): 

[ ]
[ ]

*
Var

E
1

1
exp

exp

K
d

K
<

−
         (49) 

 
We can go one step further by noting that (from equation [27]): 

( ) [ ]
[ ]2

Var
Var

E 1

exp
exp IF

exp

K
W K

K
=   −

       (50) 

 
We now have the final form of inequality (39)’s equivalent in terms of inclusive fitness: 

[ ] ( )* 1E Var 1exp exp IFd K W K− <          (51) 

or, in other words, when selection is not directional (i.e. 2( ) 1c Kγ+ > ), selection is 

stabilizing if, and only if, the grand average number of intra-patch neighbors 
( [ ]E 1exp K − ) times the dispersal rate at the singular strategy, times the variance in 

individual inclusive fitness, does not exceed unity. 
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Appendix S2: Application of the model to geometric distributions 

We consider a geometric distribution of carrying capacities defined by parameter p  
( 0 1p< < ): 

1(1 )K
K p pπ −= −          (52) 

 
The moments of this distribution can be computed: 

1K p= /           (53) 

2 1 pγ = −           (54) 

3

2

1

p

p
γ −=

−
          (55) 

 
These moments allow the computation of the ESS criterion (equation [39]) when 

2 (1 )cK Kγ > − / , i.e. 2 1p c< + : 

2
2 1

1 1 1

p c p c
p

p p p

− −< − + +
− − −

       (56) 

i.e.  
p c<            (57) 

 
If p c< , then there is an ESS. When (1 ) 2c p c< < + / , there is disruptive selection on 
dispersal. For (1 ) 2p c> + / , the singular dispersal value becomes 1 and is an ESS. For 
most values of parameter p , disruptive selection occurs rather when c  is low than 
when it is high ( 0c =  maximizes the width of the p -window for disruptive selection). 
Conversely, 1 2p = /  maximizes the width of the c -window that allows for disruptive 
selection to take place.  
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Appendix S3: Accounting for demographic stochasticity 

Our model is explicitly based on the assumption that each death event is immediately 
followed by a replacement event. Thus, local populations are immune to demographic 
stochasticity since their population sizes are always equal to their carrying capacities. 
Here, we describe a more general formulation of the model, which encompasses the 
model described in the main text and in Appendix S1 and a whole class of recruitment-
limited lottery models. 
 
Let us begin with the description of a monomorphic metapopulation with dispersal rate 
d. We note m and b the per capita mortality and birth rates, respectively, and ,k Kp  is the 

probability that a patch (with carrying capacity K) contains exactly k individuals. The 
master equation describing the dynamics of ,k Kp  is given by: 

( )( ) ( ) ( )

( ) ( )

,
1, 1,

,

1
1 1 1 1 1

1 1 1

k K
k K k K

k K

k
dp k

b d k d c p m k p
dt K

k
b d k c p

K
kd mk

− +
−   = − − − + − + +    

    − − − + − +      

  (58) 

where k  is the average number of individuals per patch over the whole metapopulation.  
 
Equation (58) is based on the following rules: 

1. offspring are produced at a rate b; 
2. offspring disperse with probability d; 
3. dispersing offspring disperse to any patch (global dispersal); 
4. dispersing offspring die with probability c; 
5. any offspring trying to settle in a patch with carrying capacity K and current 

population k has a probability 1
k

K
−  of succeeding;  

6. any unsuccessful offspring dies; 
7. settled individuals die at rate m. 

Note that “a process X happens at rate x” means that the process X is a random Poisson 
process with rate x, i.e. that the probability of X happening during an infinitesimal time 
interval dt is x.dt. 
 
When /b m → ∞ , the process described by equation (58) is equivalent to the model 
described in the main text and in Appendix S1. When /b m  is finite, demographic 
stochasticity can play a role in the dynamics of the metapopulation. Contrary to the 
model presented in the main text, the adaptive dynamics of d associated with equation 
(58) cannot be written in a compact way, mostly because the resident phenotype’s 
abundance distribution has to be found together with the value of k  and also because 
the transition matrix G becomes much bigger than in the previous model. 
 
To assess the robustness of our conclusions to the existence a small dose of 
demographic stochasticity, we ran simulations in a landscape of patches following a 
truncated geometric distribution and setting / 100b m =  (see main text). As explained in 
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the Results section, the main differences between simulations with and without 
demographic stochasticity are seen under disruptive selection regimes and concern 
drifter types. Essentially, demographic stochasticity disfavours drifters because drifters 
are less efficient than dwellers in terms of birth rate (drifters lose a significant fraction 
of their offspring due to dispersal cost). In the presence of local demographic 
stochasticity, this features can cause total extinction of drifter lineages (see e.g. on Fig. 
S3a). This in turn drives a transient directional selection regime on dwellers and 
afterwards triggers another evolutionary branching and the reformation of an equivalent 
drifter type. This effect does not change the distribution of dispersal types when 
observed over a long time scale (Fig S3b). 
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Appendix S4: Computing the plastic ESS 

In this appendix, we assume that dispersal is plastic, i.e. that dispersal cannot be 
described through a single parameter, d , but through a function, ( )d K , giving the 
optimal dispersal rate for offspring born in a patch with carrying capacity K . The 
formula given in Discussion for the ESS of plastic dispersal strategy results from the 
following reasoning. 
 
For an individual living in a K-patch, the selection gradient on ( )d K  is (equations [20] 
and [23] in Appendix S1): 

1 2
1 ( ) ( ) ( )

(1 ( ) (1 ) ( ) )

( ) ( ) (1 ( ) (1 ) ( ) )

K
m

d K d K d K

R d K K c d K K K

d K d K K d K c d K K= =

 ∂ − + −= ∂ − + − 
   (59) 

The rationale behind this equation is that the average immigrant pressure (dispersal cost 

notwithstanding) is changing from dK  (in the non-plastic model) to ( )d K K  (in the 
condition-dependent dispersal model). 
 
Solving equation (59) at the singular strategy (i.e. left-hand side equal to 0), we obtain  

( ) 1 (1 ) ( )d K K c d K K= + −         (60) 
and thus, averaging over patch types: 

( ) 1 /d K K c=           (61) 
 
Plugging equation (61) into equation (60), we finally get: 

1
( )d K

cK
=           (62) 

in accordance with the formula given in Discussion.  
 
It is reassuring to note that this equation does not go against some simple intuitions on 
plastic dispersal:  

(i) individuals in large patches should disperse less than individuals in 
small patches (because intra-patch relatedness is lower in larger 
patches);  

(ii)  having some clues as to the distribution of patch sizes removes the 
selective pressure against dispersal due to risk aversion (i.e. the term 
proportional to 2γ  in main text equation [3]).  

Interestingly, there are more migrants circulating among patches in the model that 
includes plasticity than in the model developed in the paper (compare equation [61] vs. 

( )*
21d K c γ= +  when inequality [4] is satisfied). 
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Fig. S1. Simulation results for p = 0.2 (example of stabilizing selection on dispersal). 
(a) Distribution of dispersal levels (d, ordinates) at different times during the simulation 
(steps, abscissas). Darker shades indicate a higher frequency of the corresponding 
dispersal level. (b) Frequency distribution of dispersal levels (d) when averaged over the 
last 200 records (between the 40,000,001st  and 80,000,000th steps). 
 
 

 

Fig. S2. Simulation results for p = 0.5 (example of disruptive selection on dispersal). (a) 
Distribution of dispersal levels (d, ordinates) at different times during the simulation 
(steps, abscissas). Darker shades indicate a higher frequency of the corresponding 
dispersal level. (b) Frequency distribution of dispersal levels (d) when averaged over the 
last 200 records (between the 40,000,001st  and 80,000,000th steps). 

 



Skewed patch sizes and dispersal evolution – Supplementary Information 

17/17 

 
Fig. S3. Simulation results for p = 0.5 with demographic stochasticity. (a) Distribution 
of dispersal levels (d, ordinates) at different times during the simulation (steps, 
abscissas). Darker shades indicate a higher frequency of the corresponding dispersal 
level. (b) Frequency distribution of dispersal levels (d) when averaged over the last 200 
records (between the 40,000,001st  and 80,000,000th steps). 


