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Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape.

Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been

predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability

is observed in natural populations and communities, even in relatively stable environments. We show that this diversification

can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment

consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results

in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a

high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity

of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological

communities should strive to keep the distribution of patch size sufficiently asymmetric and variable.

KEY WORDS: Adaptive dynamics, dispersal evolution, evolutionary branching, evolutionarily stable strategy, habitat

heterogeneity, kin selection.

Many species have patchy spatial distributions, that is, form

metapopulations (Hanski and Gilpin 1997), consisting of a set

of discrete populations connected by dispersal. A central theme

in metapopulation biology is the evolution of dispersal (Gandon

and Michalakis 2001; Levin et al. 2003; Ronce 2007). The purpose

of studies on this theme is twofold (Ronce 2007): first, to describe

how different factors such as extrinsic perturbations (Comins et al.

1980; Ronce et al. 2000; Gandon and Michalakis 2001; Parvinen

2002; Jansen and Vitalis 2007), habitat heterogeneity (Balkau

and Feldman 1973; Roff 1975; Hastings 1983; McPeek and Holt

1992; Mathias et al. 2001), inbreeding (Bengtsson 1978; Roze

and Rousset 2005), the costs and risks associated with dispers-

ing (Hamilton and May 1977; Comins et al. 1980; Ronce et al.

2000; Gandon and Michalakis 2001), or competition with related
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individuals (van Valen 1971; Hamilton and May 1977; Gandon

and Michalakis 2001; Cadet et al. 2003), affect the evolutionar-

ily stable strategy (ESS) for dispersal; second, to assess which

conditions lead to disruptive selection and the emergence of a

polymorphism for dispersal (Holt and McPeek 1996; Doebeli and

Ruxton 1997; Mathias et al. 2001; Parvinen 2002).

Although most simple models predict the existence of an

ESS for dispersal (e.g., Hamilton and May 1977; Comins et al.

1980; Cadet et al. 2003), many empirical observations report high

variability in dispersal strategies within species or among closely

related species (Roff 1986; Hazell et al. 2005; Hanski and Saccheri

2006). This suggests that additional factors are needed to explain

dispersal polymorphisms. For instance, environmental variability

(Roff 1975; McPeek and Holt 1992; Mathias et al. 2001), fluctu-

ating population dynamics (Holt and McPeek 1996; Doebeli and

Ruxton 1997), or random catastrophes in heterogeneous habitats

(Parvinen 2002) may lead to disruptive selection on dispersal rates

when habitat patches are spatially heterogeneous (Kisdi 2002).

Yet, even in relatively stable environments such as coral reefs

(Wood 2001), tropical rainforests (Primack and Corlett 2005), or

sub-arctic meadows (Hanski and Saccheri 2006), there is evidence

for both intra and interspecific variation in dispersal rates. To date,

theoretical results do not explain the evolutionary diversification

of dispersal rates in stable environments (Hastings 1983; Ronce

2007).

Field ecologists often observe metapopulations that are likely

to exhibit an important heterogeneity in carrying capacity among

patches. Indeed, carrying capacity, as estimated from simple prox-

ies (e.g., pond perimeters for freshwater mollusks, meadow patch

areas for some butterflies) always show some, often conspic-

uous, variability in natural systems (Hanski and Gilpin 1997;

Clobert et al. 2001; Brock et al. 2008). Intuitively, when carry-

ing capacities are uniformly low, high-dispersal types (drifters)

overpower low-dispersal types (dwellers) because offspring re-

maining in their natal patch tend to compete with related patch

mates (Hamilton and May 1977). Conversely, when carrying ca-

pacities are high, dwellers dominate because dispersal is costly

and kin competition is weak. More generally, the dispersal ESS is

determined by the balance between kin competition and dispersal

cost (Gandon and Michalakis 2001). An open question is what

happens when carrying capacities are variable among populations.

In this study, we propose a model based solely on dispersal

cost and kin competition in which the diversification of dispersal

rates results from heterogeneous population sizes.

Methods
MODEL BASICS

We considered a metapopulation (a set of populations connected

by dispersal) consisting of an infinite number of patches, with

a specified distribution of carrying capacities. As an approxima-

tion, patches were considered to have fixed population sizes (car-

rying capacities, K, with frequencies πK), that is, resources freed

by an individual’s death were immediately allocated to a newly

settled individual, and there was no catastrophe wiping out a

whole population. The model obeyed the following rules (Fig. 1):

(1) all individuals had the same mortality rate; (2) a dead individ-

ual was immediately replaced by either a resident or immigrant

(dispersed) offspring; (3) all individuals had the same fecundity;

(4) individuals of strategy d sent a proportion d of their offspring to

the propagule pool (1 − d remained in their natal patch); (5) a pro-

portion c of propagules (the dispersal cost) died before reaching

a randomly chosen destination patch. Following these rules, the

probability that the next death (in a patch with carrying capacity

K) affected a type s individual (local abundance ks) was ks/K, and

the probability that a dead individual was replaced by a type s in-

dividual (average abundance over all patches k̄s) was proportional

to (1 − ds)ks + (1 − c)ds k̄s . When dispersal is monomorphic, our

model was equivalent to Hubbell’s neutral community model with

no speciation (Hubbell 2001).

Based on these five elementary rules, we studied the effects

of selection by testing whether a rare mutant with dispersal strat-

egy d increased in frequency in a resident metapopulation with

strategy d̂ . In a homogeneous population, this is usually assessed

by computing the reproductive rate of the mutant (Charlesworth

1994); in a metapopulation, the relevant quantity (Rm) is the av-

erage number of dispersers produced by a population founded

by a single mutant disperser (Chesson 1984; Metz and Gyllen-

berg 2001; Massol et al. 2009). Assuming that mutations are rare

and have small individual effects, the adaptive dynamics method

(Hofbauer and Sigmund 1990; Geritz et al. 1998; Champagnat

et al. 2006) can be used to determine whether natural selec-

tion is stabilizing (ESS) or disruptive (branching point), pro-

vided singular strategies are convergence stable (CS, Geritz et al.

1998).

INVASIBILITY ANALYSIS

When type 1 was very rare, it could invade a metapopulation

entirely occupied by type 2 only if Rm(d1, d2)>1, where Rm(d1,

d2) was defined as the mean number of dispersers produced by

a type 1 colony between its foundation and its eventual demise,

in the absence of type 1 immigrants (Chesson 1984; Metz and

Gyllenberg 2001; Massol et al. 2009). The computation of Rm

yielded (Appendix S1):

Rm(d1, d2) =
∑

K

[
(1 − c)d1 KπK

(1 − d2)(K − 1) + (1 − c)d2 K̄

]

2 F1

[
1, 1 − K ; 2 − K − (1 − c)d2 K̄

1 − d2
;

1 − d1

1 − d2

]
,

(1)
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Figure 1. Structure of the metapopulation model used to study the evolution of dispersal. (A) Functioning of the metapopulation. Open

ovals indicate patches, with variable carrying capacity (K), closed ovals are individuals. The dotted box represents the propagule pool,

before and after applying the cost of dispersal, which removes a fraction c of propagules. Solid arrows represent the flows of offspring

(a proportion d is dispersed, and 1 − d remains in the natal patch); dotted arrows, the flows of propagules (dispersed offspring). (B)

Competition between different types. Two types (black and gray, that differ with respect to their dispersal rates) compete in a fully

occupied patch containing three individuals. A black individual dies; a stochastic competition process takes place immediately among

resident offspring (solid arrows) and immigrant propagules (dotted arrows) from both types. In our example, the empty site is eventually

occupied by a gray individual.

where 2F1[a,b;c;z] is the hypergeometric series. Singular strate-

gies of dispersal were found by nullifying the selection gradient,

that is, d was a singular strategy when [∂ Rm/∂d1]d1=d2=d = 0

(Hofbauer and Sigmund 1990). In turn, a singular strategy was

CS when [∂2 Rm/∂d2
1 ]d1=d2=d < [∂2 Rm/∂d2

2 ]d1=d2=d and an ESS

when [∂2 Rm/∂d2
1 ]d1=d2=d = 0 (Geritz et al. 1998).

SIMULATIONS

To confirm analytical predictions, we performed simulations

of evolutionary processes in metapopulations. We simulated

metapopulations in a landscape containing N = 1000 patches.

The carrying capacities of the patches followed a truncated geo-

metric distribution of parameter p, that is, πK = p(1 − p)K−1 for

K < Kmax and πKmax = (1 − p)Kmax−1. The difference between the

truncated and true geometric distributions was small as long as

Kmax was high enough. We took Kmax ≈ − log (N)/log (1 − p),

so that the probability that a patch had more than Kmax microsites

was ≈ 1/N under the corresponding true geometric distribution.

A simulation started with the generation of the landscape. All

patches were then filled with a unique type that had a dispersal

strategy of 0.5 (this has no consequence on the result of the sim-

ulations). At each simulation step, one microsite was randomly

chosen among all microsites from all patches, its occupant was

killed and there was a lottery competition for replacement in that

microsite (according to the five model rules). Once the type of the

replacing individual was found, there was a 0.001 probability that

it was in fact a mutant that deviated from its ancestral phenotype

(this implies that dispersal is maternally controlled). The disper-

sal strategy of a mutant was computed as the dispersal strategy

of its ancestral type plus a random Gaussian variable (standard

deviation = 0.1). As dispersal cannot be higher than 1 or lower

than 0, the difference between the ancestral and mutant dispersal

strategies was halved when the latter was off limit. If this did not

suffice to obtain a suitable mutant phenotype, the mutant dispersal

strategy was equal to its ancestral strategy.

Each simulation ran for 80,000,000 steps (even very large

metapopulations, i.e., with low p had evolutionarily converged

before the 40,000,001st step). Every 200,000 steps, the metapop-

ulation state was summarized (types were grouped by dispersal

strategies in 101 equally spaced classes, from d = 0.00 to d = 1.00)

and recorded. Thus, at the end of a simulation, we obtained a his-

torical record of 400 metapopulation states (e.g., Fig. S1 and S2).
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The steady state of the metapopulation was taken as the average

of the last 200 records (i.e., the average of recorded metapopu-

lation states between the 40,000,001st and 80,000,000th steps).

Because disruptive selection occurred for c < p < (1 + c)/2 (see

Appendix S2), we took c = 0.33 for all simulations (so that the p

scale could be divided in three equal parts) and varied parameter

p in the interval [0.05;0.95] in steps of size 0.01.

ROBUSTNESS TO DEMOGRAPHIC STOCHASTICITY

The simulations conducted above assumed fixed population sizes,

and therefore no demographic stochasticity. To assess whether

our results were robust to relaxing this assumption, we also ran

simulations in a metapopulation in which the ratio of birth rate

to death rate (b/m ratio) was finite (i.e., replacements of dead

individuals were not immediate). In this model, local population

numbers were subject to stochastic fluctuations because an empty

site within a patch could remain so while other individuals died

or were recruited in other sites. We ran simulations in a landscape

of patches following a truncated geometric distribution of patch

carrying capacity (as above), with c = 0.33 and b/m = 100. Details

on the model with demographic stochasticity can be found in

Appendix S3.

FIELD DATA ON PATCH SIZE DISTRIBUTIONS

To confront model predictions with data, we computed the dis-

tribution of patch size in seven landscapes representing very dif-

ferent situations: pond sizes in the Grande Terre of Guadeloupe

island (West Indies), which are home to several species of fresh-

water mollusks (P. David et al., unpubl. data); the populations

of large cities in People’s Republic of China (United Nations’

data for year 2003), which suit our model from the viewpoint

of human parasites; the areas of dry meadow patches on Åland

islands, harboring populations of the Glanville fritillary butterfly

Melitaea cinxia (I. Hanski, pers. comm.); the areas of islands in

the Tuamotu archipelago (French Polynesia, data from the “In-

stitut de la statistique de Polynésie française”); the size of forest

patches in Pennsylvania (USA, US geological survey data); the

areas of Svalbard islands (Norway); and the areas of coral reefs in

the Northern Florida Keys (USA, J. C. Brock and M. Palaseanu-

Lovejoy, pers. comm.). For each dataset, we assessed whether

disruptive selection on dispersal was likely for organisms that can

inhabit these habitat patches.

Results
ANALYTICAL PREDICTIONS

In our model, the evolution of dispersal is affected by the cost

of dispersal (c), and three moments of the distribution of patch

carrying capacities: its mean (K̄ = E[K ]), squared coefficient

of variation (γ2 = E[(K − K̄ )2]/K̄ 2), and standardized skewness

(γ3 = E[(K − K̄ )3]/(K̄ 3γ
3/2
2 )). From equation (1), the selection

gradient is given by

[
∂ Rm

∂d1

]
d1=d2=d

= 1 − (c + γ2)K̄ d

d(1 − d + d(1 − c)K̄ )
(2)

which yields the unique singular strategy, d∗:

d∗ = Min

[
1

(c + γ2)K̄
, 1.

]
(3)

The ESS conditions are obtained through double differentiation

of equation (1). Following these conditions (Appendix S1), the

evolution of dispersal leads to a unique ESS either when

(c + γ2)K̄ < 1 (4)

or

γ3 < 2γ
1/2
2 + (cK̄ − 1)

K̄
γ

−1/2
2 + c(K̄ − 1)

K̄
γ

−3/2
2 . (5)

When inequality (4) is satisfied, evolutionary stability is always

achieved because d∗ = 1 is not an interior extremum of the fitness

function, but rather results from a trait constraint and directional

selection (eq. 3). When (c + γ2)K̄ > 1 and inequality (5) is sat-

isfied, d∗ is a maximum of Rm(d,d∗), and thus is an ESS.

Stabilizing selection may occur for any value of γ2, but only

for a narrow range of γ3 values (Fig. 2). Under conditions of

stabilizing selection, an increase in the cost of dispersal (c), in the

average carrying capacity (K̄ ), or in the heterogeneity of carrying

capacities (γ2) selects against dispersal (eq. 3). In other words,

three separate processes select against dispersal: (1) the direct

cost of dispersal (c); (2) the indirect cost due to the asymmetry

of migrant flow between small and large patches (Holt 1985),

embodied in the factor γ2; and (3) the fact that individuals are less

related to each other in a metapopulation with high K̄ .

When the distribution of carrying capacity is sufficiently

variable and positively skewed (large γ2 and γ3), so that neither

inequality (4) nor (5) is satisfied, disruptive selection occurs, and

two or more strategies emerge. Disruptive selection is more likely

when the dispersal cost is low (inequality [5]), and the mean car-

rying capacity is intermediate (just above 1/(γ2 + c); inequalities

[4] and [5]). Although inequality (4) is simple to understand (if in-

equality [4] is satisfied, d∗ = 1 and thus selection is directional at

the singular strategy, precluding disruptive selection), inequality

(5) needs a little re-writing to be clearly interpreted. Noting Eexp

and Varexp, the operators for mean and variance of metapopulation

quantities experienced by individuals, and W IF (K) the inclusive

fitness (sensu Ajar 2003) of individuals in K-patches, inequality

(5) is equivalent to (Appendix S1)

d∗Eexp[K − 1]Varexp[WIF(K )] < 1. (6)
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Figure 2. Conditions for disruptive or stabilizing selection on dis-

persal. Abscissas indicate the value of the coefficient of variation

of carrying capacities (γ2), ordinates represent the value of the

skewness of carrying capacities (γ3). The black region is mathe-

matically impossible because there is a lower bound ( =1) to the

value of the carrying capacity of a patch. In the gray region, there

is a unique ESS for the dispersal level (stabilizing selection). In

the white region, selection on dispersal is disruptive and adap-

tive dynamics display an evolutionary branching point. Thick lines

indicate the first (dashed line) and second (solid line) boundaries

separating domains of disruptive and stabilizing selection, corre-

sponding to inequalities (4) and (5), respectively. The cost of dis-

persal is fixed at c = 0.2, and the mean carrying capacity is either

(A) K̄ = 2 or (B) K̄ = ∞.

Inequality (6) means that disruptive selection only occurs when in-

dividuals experience sufficiently variable inclusive fitness among

patch types (Varexp [WIF(K)]), and it is favored when the average

number of intrapatch neighbors (Eexp [K − 1]) and the singular

dispersal strategy (d∗) are high. The variance in inclusive fitness

in inequality (6) is the term that increases with the skewness of

the distribution of carrying capacity (Appendix S1), i.e., selective

pressures on dispersal are more variable in a metapopulation with

a more skewed distribution of carrying capacity, and this in turn

allows for disruptive selection on dispersal to take place.

Inequalities (4) and (5) implicitly define two parameter

boundaries separating stabilizing and disruptive selection regimes

(Fig. 2). The first boundary (inequality [4]) is defined by a mini-

mum value on carrying capacity variability γ2 (equal to 1/K̄ − c)

under which d∗ = 1 is selected. The second boundary (inequality

[5]) is defined by a minimum value on carrying capacity skew-

ness under which selection is stabilizing. When cK̄ > 1, only the

second boundary (inequality [5]) exists (Fig. 2B).

Under a disruptive selection regime close to either parameter

boundary (as defined by inequalities [4] and [5]), two strategies

(called drifters and dwellers, for high- and low-dispersal types,

respectively) emerge from the branching point and stably coexist.

Dwellers disappear when carrying capacity variability becomes

too low (i.e., when crossing the first boundary; inequality [4])

because selection becomes directional, whereas drifters do not

emerge when carrying capacity distribution is less skewed (i.e.,

when crossing the second boundary; inequality [5]) because in-

clusive fitness is not variable enough, which precludes disruptive

selection to occur (inequality [6]). Stating that drifters disappear

at the second boundary may be deemed arbitrary. However, in-

equality (6), which also defines the second boundary, implies

an upper bound for d∗ under stabilizing selection: d∗ < 1/Eexp

[K − 1] Varexp [WIF(K)], hence our choice of writing that drifters

disappear at this boundary.

SIMULATION RESULTS

Analytical predictions are corroborated by simulations of finite

metapopulations (Fig. 3). As an example, when carrying capaci-

ties follow a geometric distribution of parameter p (which controls

both the variance and skewness of the distribution), our model pre-

dicts disruptive selection on dispersal when c ≤ p ≤ (1 + c)/2,

and stabilizing selection otherwise (Appendix S2). This is indeed

what we observe in simulations (Fig. 3): selection is stabilizing

at low and high values of p, and the observed dispersal level

agrees with analytical predictions (eq. 3; see Fig. 3A and S1).

When p is lower than c, drifters disappear, whereas dwellers do

when p > (1 + c)/2 (Fig. 3). For intermediate values of p, we

observe evolutionary branching, so that the variance of dispersal

level is increased (Fig. 3B): drifters and dwellers coexist (Fig. 3A

and S2).

THE EFFECT OF DEMOGRAPHIC STOCHASTICITY

When population size is allowed to vary stochastically, simu-

lations of finite metapopulations corroborate predictions made

under the model with fixed population size (Fig. 3C, D). The ob-

served values for dispersal agree with the ESS prediction when

p < c (Fig. 3C). Disruptive and stabilizing selection regimes occur

almost as predicted under the simple model with fixed population

sizes (Fig. 3D). The only barely noticeable differences between

the two series of simulations happen in the “disruptive selection”

range: when demographic stochasticity is added, drifters tend

to have a lower dispersal rate (and to be less abundant, results
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Figure 3. Simulations of metapopulations with geometric distribution of carrying capacities. (A, C) Distribution of dispersal types (d,

ordinates) for different values of the geometric distribution parameter (p, abscissas). Darker gray shades indicate a higher frequency of the

corresponding dispersal type. The thick black line indicates the theoretical value of the ESS (continuous line) or branching point (dashed

line). (B, D) Standard deviation of dispersal distributions (ordinates) for different values of p (abscissas). In all panels, vertical dashed

lines indicate the theoretical limits separating stabilizing and disruptive selection on dispersal (Appendix S2). The cost of dispersal is c =
0.33. Panels (A) and (B) correspond to the model with fixed population sizes; panels (C) and (D), to the general model with demographic

stochasticity.

not shown) than when population sizes are constant (Fig. 3A,

C). However, this effect does not contradict our prediction on

the occurrence of disruptive selection under predicted parameter

values.

APPLICATION TO FIELD DATA

An interesting property of our model is that it provides a suffi-

cient criterion for the occurrence of disruptive selection on dis-

persal (this criterion is based on the worst possible conditions

for disruptive selection to occur; see Appendix S1). When K̄ is

large, selection is disruptive for c < cmax, with cmax = (γ3 −
2γ

1/2
2 )γ3/2

2 /(1 + γ2). Hence, when cmax > 1, the distribution of

carrying capacity always favors disruptive selection on dispersal.

This is interesting from an empirical point of view because it is

often difficult to measure carrying capacities in natural metapop-

ulations. Indeed, this requires counting individuals in each pop-

ulation, which is unfeasible with most small-sized organisms.

Moreover, actual dispersal costs are also difficult to measure. For

these two reasons, we cannot directly predict whether stabilizing

or disruptive selection would occur in organisms that have not

been thoroughly studied. However, cmax can be used to evaluate

whether disruptive selection on dispersal due to patch size hetero-

geneity is likely when simple proxies of carrying capacities, such

as patch area, are available.

EVOLUTION FEBRUARY 2011 4 9 5
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Table 1. Distributions of carrying capacity proxies in real datasets.

Dataset Proxy (unit) No. of patches γ2 γ3 cmax

Ponds (Guadeloupe)1 width (m) 274 1.7 4.5 1.5
Population in big cities (China)2 pop. size (inhab.) 664 1.5 6.7 3.2
Dry meadows (Åland islands, Finland)3 area (m2) 4,109 7.3 11.1 13.5
Tuamotu archipelago (French Polynesia)4 area (km2) 118 10.7 8.1 4.7
Forest patches (Pennsylvania, USA)5 area (m2) 252 44.7 12.0 −8.7
Svalbard islands (Norway)6 area (km2) 11 4.5 2.7 −2.7
Coral reefs (Northern Florida Keys, USA)7 area (m2) 1,034 1.3 3.8 1.0

1P. David et al., unpubl. data.
2Data from http://unstats.un.org/unsd/demographic/products/dyb/DYB2003/Table08.pdf accessed on September 16th, 2007.
3I. Hanski, pers. comm.; see also Hanski and Saccheri (2006).
4Institut de la statistique de Polynésie française.
5National Landcover Pattern Database, US geological survey (http://www.lsc.usgs.gov/gis/nlpd/asp/pages/getstate.asp?abbrev=PA).
6data obtained http://en.wikipedia.org/wiki/List_of_islands_of_Norway_by_area.
7J. C. Brock and M. Palaseanu-Lovejoy, pers. comm.; see also Brock et al. (2008).

The seven patch size distributions that we collected are pos-

itively skewed (Table 1). cmax largely exceeds 1 in all but two

datasets (forest patches in Pennsylvania and Svalbard islands) and

is almost equal to 1 in Northern Florida Keys coral reef patches.

This suggests that disruptive selection on dispersal can operate

under widely different natural settings.

Discussion
THE SKEWNESS OF PATCH SIZE DISTRIBUTION

MATTERS

Using a simple metapopulation model (i.e., individuals belong to

different populations connected by dispersal), we have shown that

disruptive selection on dispersal can occur in natural populations

under a larger range of conditions than suggested by previous

work (Holt and McPeek 1996; Doebeli and Ruxton 1997; Mathias

et al. 2001; Parvinen 2002). Disruptive selection occurs when the

distribution of carrying capacity across metapopulation patches is

sufficiently skewed, or in simpler terms when the metapopulation

is made of few large and many small populations. The reason

for this is that a positive skewness of the distribution of carrying

capacity ensures that inclusive fitness is variable enough among

individuals living in different patch types. Contrary to previous

models on the occurrence of disruptive selection on dispersal

(McPeek and Holt 1992; Holt and McPeek 1996; Doebeli and

Ruxton 1997; Mathias et al. 2001; Parvinen 2002), our model

does not assume that local populations are subject to random

extinctions, complex population dynamics, or heterogeneity in

perturbation regimes.

Parvinen (2002) also predicted that disruptive selection on

dispersal can occur in a metapopulation consisting of different

patch types. Parvinen (2002) specifically studied the conditions

in which disruptive selection on dispersal could occur in a model

that allowed for heterogeneous perturbations, carrying capacities,

and maximal growth rates. However, in the same vein as Hastings

(1983) and Holt (1985), Parvinen (2002) ignored kin competition

effects but incorporated indirect dispersal costs due to average

migration flows, so that dispersal was selected by perturbations

(as in Comins et al. 1980) and counter-selected by heterogene-

ity in carrying capacities (as in Hastings 1983). Parvinen (2002)

found that disruptive selection could occur in metapopulations

with heterogeneous perturbation rates (Parvinen 2002, Fig. 4B

therein) or heterogeneous carrying capacities (Parvinen 2002,

Fig. 5B therein). In the light of inequality (6), our results and

Parvinen’s share the same rationale, that is, that disruptive selec-

tion on dispersal occurs when the selection gradient on dispersal

is sufficiently variable among individuals in the metapopulation.

In our study, this variability stems from the heterogeneity in kin

competition and indirect dispersal costs; in Parvinen (2002), this

variability stems from the heterogeneity in perturbation rates and

indirect dispersal costs.

Our analytical approach is confirmed by simulations, both

with and without demographic stochasticity. In the simplest case,

two strategies (drifters and dwellers) can coexist after evolutionary

branching: dwellers stably inhabit the few large patches whereas

drifters occupy most of the small patches. Dwellers persist in

large patches because the cost of dispersal favors the recruit-

ment of residents. Conversely, drifters persist in small patches

because dwellers rarely reach them and, when they succeed,

do not often disperse to other patches, thus yielding little re-

ward in terms of new colonizations. It should be noted, however,

that stabilizing selection does not preclude dispersal polymor-

phism: it is possible that a dimorphic coalition (with dwellers

and drifters) is evolutionarily stable and yet not evolutionar-

ily attainable because selection is stabilizing in monomorphic

metapopulations.

4 9 6 EVOLUTION FEBRUARY 2011



SKEWED PATCH SIZES AND DISPERSAL EVOLUTION

SPATIAL VARIABILITY DOES NOT PREVENT

SELECTION FOR DISPERSAL

In our model, the only factors driving dispersal evolution are the

cost of dispersal and spatially heterogeneous patch size, which

generates both variation in the intensity of kin competition (kin

competition is more intense in small patches) and asymmetry

in migrant flow (most migrants leave large patches to enter small

patches). Our conclusions apparently contradict those reported on

the basis of an earlier model (Hastings 1983; see also Holt 1985)

that “spatial variation alone cannot lead to selection for dispersal.”

However, in that model, patches are described using mean-field

dynamics, an approximation that removes stochasticity in the col-

onization process and effectively suppresses kin competition, the

main force selecting for dispersal (Hamilton and May 1977; Cadet

et al. 2003). Thus, we intuitively expect Hastings’ model to select

against dispersal because it does not incorporate kin competition,

as predicted by our model under a stabilizing selection regime

(eq. 3) when patch size variance is not 0 and the average patch

size tends toward infinity (effectively suppressing kin competi-

tion effects by lowering relatedness among patch mates). Even in

the absence of kin competition, selection for nonzero dispersal is

still possible, provided another selective pressure, such as pertur-

bations (Comins et al. 1980) or demographic stochasticity (Cadet

et al. 2003), is present.

NATURAL METAPOPULATIONS HAVE SKEWED PATCH

SIZE DISTRIBUTIONS

Are conditions favoring disruptive selection on dispersal frequent

in the real world? In five of the seven datasets studied here (see

Table 1), our criterion suggests the possibility of disruptive selec-

tion. This finding certainly opens the way to empirical evaluation

in natural situations in which species have more or less patchy

distributions. An encouraging, recurrent observation is that distri-

butions of animal group-size are almost always highly positively

skewed (e.g., Thompson and Lyons 1964; Jarman 1974; Wirtz

and Lörscher 1983). Aggregation of individual plants (e.g., due

to small-tail dispersal kernels and/or to patches of favorable con-

ditions) may also lead to skewed distributions of plant density at

low spatial scales (Pélissier and Goreaud 2001).

It is interesting to note that a stable genetic polymorphism

of the glycolytic enzyme phosphoglucose isomerase (Pgi), a gene

affecting insect mobility and, thus, dispersal ability (Haag et al.

2005), has been observed in natural populations of the Glanville

fritillary butterfly M. cinxia on Åland islands (Hanski and Sac-

cheri 2006). This shows that dwellers and drifters can stably

coexist in the same species, as predicted by our model. More-

over, Pgi polymorphism is not a conspicuous dispersal polymor-

phism, unlike e.g., wing size in crickets (Roff 1986), variation

in the proportion of winged offspring in aphids (Hazell et al.

2005), or in the proportion of seeds with pappus in the Aster-

aceae Crepis sancta (Imbert et al. 1997). The findings of Hanski

and Saccheri (2006) suggest that inconspicuous dispersal poly-

morphisms exist; our model proposes that such polymorphisms

can be found in metapopulations harboring few large and many

small patches.

It should be noted that patch area is taken as a proxy to

carrying capacity in five of seven datasets. This is not in com-

plete accordance with our model because we assumed that immi-

grant pressure is independent of local carrying capacity: under a

propagule rain model, it is expected that immigrant pressure is

proportional to patch area. Thus, if patch area is taken as a direct

proxy for carrying capacity, immigrant pressure is expected to

be proportional to carrying capacity (and thus disruptive selec-

tion would be impossible because inclusive fitness would be less

variable among patch types). Two observations seem to mitigate

this:

- propagule rain is unlikely in organisms that disperse ac-

tively. In active dispersers, indeed, immigrant pressure is

more likely to be linked to the contour of patches (i.e.,

perimeter in two dimensions, or surface in three dimen-

sions). This would put the “more realistic model” halfway

between ours and a model with immigration proportional to

carrying capacity;

- Connor et al. (2000) have shown that population density

tends on average to increase with area within species. This

observation suggests that the skewness and coefficient of

variation of carrying capacity assessed through area are un-

derestimated. Thus, using patch areas as proxies of carrying

capacities is a conservative option. Moreover, even if immi-

gration is proportional to area (propagule rain assumption),

this observation means that immigration will be less than

proportional to carrying capacity. These two observations

mean that the conclusions stemming from Table 1, although

quantitatively imprecise, are qualitatively supported: popu-

lation sizes are likely to be positively skewed in many cases

in nature implying that disruptive selection on dispersal is

to be expected.

A TESTABLE THEORY FOR DISPERSAL

POLYMORPHISMS

The creation and maintenance of dispersal polymorphisms is usu-

ally explained by the interplay of the selective forces that clas-

sically determine dispersal evolution: perturbations, inbreeding

depression, dispersal cost, kin competition, habitat heterogeneity,

complex population dynamics, and/or environmental fluctuations

(Roff 1975; McPeek and Holt 1992; Holt and McPeek 1996;

Mathias et al. 2001; Parvinen 2002; Ronce 2007). Our model,

by comparison, explains dispersal polymorphisms based only on

the existence of dispersal cost and variability in kin competition
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intensity (through variability in carrying capacity). We do not

question the existence of perturbations, chaotic population dy-

namics, or inbreeding depression in natural systems. Moreover,

we acknowledge that these factors may have an important influ-

ence on dispersal evolution. However, we propose that variability

in carrying capacity among patches may often be the factor that

triggers disruptive selection on dispersal when all other factors

would predict the existence of a unique ESS. Our proposition

can be falsified using minimal information on studied metapop-

ulations, contrary to all other hypotheses explaining dispersal

polymorphisms. Thus, before invoking perturbations or chaotic

population dynamics, the distribution of patch sizes has to be

tested using our criterion to assess whether variability in kin com-

petition intensity alone can explain an observed natural polymor-

phism of dispersal (such as in M. cinxia on Åland islands). In

general, testing alternative hypotheses is more difficult because it

requires data on the spatio-temporal variability of patch sizes or

population numbers (Holt and McPeek 1996; Mathias et al. 2001)

or on the correlation between patch size and perturbation regime

(Parvinen 2002).

DISPERSAL POLYMORPHISM OR PLASTIC DISPERSAL

STRATEGY?

Predicting disruptive selection on dispersal rate does not auto-

matically imply the existence of a genetic polymorphism at loci

controlling dispersal abilities, as in the Glanville fritillary butter-

fly (Hanski and Saccheri 2006). Indeed, circumstances favoring

the evolution of multiple fixed dispersal strategies may be equally

favorable to the evolution of a complex plastic dispersal strat-

egy (Kisdi 2004; Leimar 2005; Clobert et al. 2009; Enfjall and

Leimar 2009). Numerous empirical examples have shown that

plasticity of dispersal-related traits is common in nature (Clobert

et al. 2001, 2009). However, theoretical investigation of condition-

dependent dispersal has begun only recently (Travis et al. 1999;

Metz and Gyllenberg 2001; Poethke and Hovestadt 2002; Kisdi

2004; Barton et al. 2009; Enfjall and Leimar 2009), and theories

linking results obtained on the evolution of fixed dispersal strate-

gies to condition-dependent dispersal predictions are lacking. If

we allow for plastic dispersal strategies in our model, the singu-

lar dispersal strategy d(K) is found through nullifying the selec-

tion gradient for each value of K, that is, d(K) = Min[1/(cK),1]

(Appendix S4). Thus, variability in carrying capacities directly

fosters plasticity in dispersal ability. Of course, this result as-

sumes that plasticity is not costly and that K can be perceived

without error by individuals. In the more likely case of a positive

cost to plasticity and limited perceptive ability, we speculate that

a highly positively skewed carrying capacity distribution still se-

lects for a decreasing reaction norm (i.e., dispersal decreases with

increasing K).

CONSEQUENCES FOR REALISTIC COMMUNITY

MODELS

Although our model describes the evolution of types in a species

living in a metapopulation, it might also be helpful for understand-

ing and enhancing metacommunity models, that is, when consid-

ering that each type corresponds to a different species. Because

conditions for the evolutionary branching of dispersal rates ap-

pear to be quite frequent in nature, we may question the realism of

species coexistence models that assume a fixed uniform value for

the dispersal rate of all species, such as neutral community mod-

els (Hubbell 2001). A consequence of incorporating variability in

dispersal abilities among species is that species interactions be-

come nonneutral (grossly, dwellers win in large patches, drifters

win in small patches), and thus frequency-dependent selection

occurs. Frequency-dependent selection radically changes popula-

tion dynamics: when a species is rare in the metacommunity, it

deterministically promotes either its recovery or its demise. By

contrast, in neutral community models, the fate of a rare species

is completely random. Even though the initial formulation of our

model is “neutral” in the sense that there is no ecological differ-

ence between species and there is a single initial dispersal strategy,

the addition of evolutionary forces leads to nonneutral dynamics

whereby stochastic drift becomes less important. Accounting for

the effects of evolution might be the next challenge that commu-

nity models will have to face to explain current species diversity

in ecosystems (Urban and Skelly 2006).

A NEW PERSPECTIVE ON BIOLOGICAL

CONSERVATION IN FRAGMENTED LANDSCAPES

Our results also have important consequences for biodiversity

conservation policies. Whether natural reserves should consist of

a “Single Large Or Several Small” areas (the so-called SLOSS

debate [Hanski and Gilpin 1997]) used to be held as central to the

preservation of individual species (but see Semlitsch and Bodie

1998). That communities are often nested (i.e., very rare species

only occur in species-rich communities) led to suggesting discard-

ing small reserve patches in favor of fewer large ones (Patterson

and Atmar 1986). However, to preserve species diversity within

communities and future evolutionary potential (Forest et al. 2007),

one should rather foster conditions under which many strategies

can emerge and coexist, for example, by increasing habitat di-

versity to preserve species with different ecological requirements

and by maintaining a sufficient amount of hospitable habitats to

maintain a balance between fugitive and competitive species (Nee

and May 1992). Moreover, a metapopulation hosting types with

various dispersal strategies is less likely to collapse after a habitat

fragmentation event than a monomorphic metapopulation (Leimar

and Norberg 1997). Our model suggests that the conservation of

species with different dispersal strategies depends on the spatial
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configuration of the protected habitats, and thus does not depend

on an optimum reserve size, but rather on the existence of “Few

Large And Many Small” patches.
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