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distribution models – Supplementary Material 

Gritti, E.S.1,2, Duputié, A.1,2 , Massol, F.1,3 & Chuine, I.1 

 
This file: 

- describes the SDMs used in the main text in detail, and provides their parameterization (section I) 
- indicates how bioclimatic data were summarized into three independent variables (hereafter used to 

describe the environment) (section II) 
- provides details on how the conditional consensus  model was built, including commented R code 

(section III) 
- describes how forecasts (of both SDMs and of the conditional consensus model) were performed 

(section IV) 
- explains how the other consensus models were built and how model accuracy was evaluated (section 

V).  
Two R scripts and data are provided to reproduce the results of the paper, starting with section III; these codes 
need some modification to be applied to other datasets. Code and data are located in the separate file 

“GrittietalScripts.zip”.  
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I. SPECIES DISTRIBUTION MODELS 

A. STASH 

STASH (Sykes et al. 1996) is a correlative model of species distribution, based on a minimal set of 
physiologically relevant bioclimatic parameters. 

1. DESCRIPTION OF THE MODEL. 

 
This model calculates a growth efficiency index (Growth index; Gi) of a species at each location x  for a given 

period as follows: 

  x x x x x x xGi Est Tcmin Tcmax Twmin GDD Di Dtf          (1) 

where Est  is the mean establishment rate of the species (expressed in saplings/ha/year, assumed constant 

over pixels), xTcmin , xTcmax , xTwmin  and xGDD  define four bioclimatic limits to establishment, and 

xDi  and xDtf are multipliers of the growth index.   

Bioclimatic limits are determined using the observed distribution of the species, raising the risk of overfitting. 
To limit this risk, we performed 100 re-samplings of the observed distribution, used 30% of the pixels to 
determine the bioclimatic limits, projected the output of STASH on the remaining 70% pixels (the validation 
set), and used only STASH projections made on pixels belonging to the validation sets (see below; section I.A.2).  

(1) 1. BIOCLIMATIC LIMITS. 

 

 xTcmin  is defined by the minimum mean monthly temperature, below which establishment and 

growth are impossible:  

 
0 if

1 if

Tc minTc
Tcminx

Tc minTc


 

        

 (2) 

where Tc  is the coldest-month mean temperature (surrogate of the absolute minimum temperature; Prentice 

et al. 1992) and minTc  the species tolerance limit for this variable. 

 

 xTcmax  is defined by the warmest mean temperature of the coldest month, above which 

establishment and growth are impossible (for example because bud dormancy cannot be achieved):  

 
0 if

1 if
x

Tc maxTc
Tcmax

Tc maxTc


 


       (3) 

where Tc  is the coldest-month mean temperature and maxTc  the species tolerance limit for this variable. 

 

 xTwmin  is defined by the coldest mean monthly temperature of the warmest month, below which 

establishment and growth are impossible (for example because fruit maturation cannot occur):  

 
0 if

1 if
x

Tw minTw
Tcmax

Tw minTw


 


       (4) 

where Tw  is the mean warmest-month temperature and maxTc  the species minimum tolerance limit for 

this variable. 
 

 xGDD  is defined by the minimum requirement in growing degree-days: 
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0 if ( )

1 if ( )

kC

x kC

GDD b e minGDD
GDD

GDD b e minGDD





  
 

 
      (5) 

where GDD  is the mean cumulative degrees above 5°C for deciduous and -4°C for evergreen; b  is the 

cumulative degree above 5°C (or -4°C) for budburst with no chilling, k  is the decay rate of the GDD  need 

for budburst, C  the mean number of chilling days per year and minGDD  the species minimum tolerance 

limit for this variable. 

(2) 2. MULTIPLIERS OF THE GROWTH EFFICIENCY INDEX. 

 

 
xDI  is a drought index: 

 

2

Max 0;1x

PET AET
Di

PET maxDi

  
   
   

       (6) 

where AET  is the actual evapotranspiration and PET  the potential evapotranspiration, and maxDi  the 

species maximum tolerance limit for 1 /AET PET  over its growing period. 

 

 xDtf  is an index of photosynthetic efficiency, depending upon daily temperature: 
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      (7) 

where dT  is the daily temperature, lT  and hT  the lowest and highest temperatures for optimal 

photosynthesis, and xDtf  is computed only over the period when d lT T . 

(3) 3. INPUT AND OUTPUT VARIABLES 

 
The input variables are monthly average temperature, precipitation and percentage of sunshine. From these 
variables, 1- AET/PET, the temperature variables and the number of growing degree-days are computed over a 
20-year period (1981-2000 for the “current” dataset; 2081-2100 for the scenarios; see Sykes et al. 1996 for 
details). Daily temperatures are linearly interpolated from monthly values.  
 

The growth efficiency index output by STASH, Gix, is comprised between 0 and Est . To yield a surrogate for 

the probability of presence, and without loss of generality, we used 1Est  . 

(4) 4. AVAILABILITY AND USE 

 
STASH is available from the EMBERS group of Lund University, upon request. Because of its simplicity and 
accuracy, STASH has been often used to estimate the potential distribution of tree species under past, current 
and future climatic conditions (e.g. Sykes et al. 1996; Giesecke et al. 2007; Walther et al. 2007). 
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2. MODEL PARAMETERIZATION (TABLE S1) 

 
Bioclimatic envelopes (and thus, species specific limits) are determined by comparing the distribution map of 
each bioclimatic limit to the observed distribution of the species, provided by Atlas Flora Europeae (Tutin et al. 
1964-85; completed by Laurent et al. 2004; Fig. S1). These reference maps compile species observations from 
the second half of the 20

th
 century and are assumed to reflect the most accurate approximation of the species 

distribution available at the European scale, resulting from last normal climatic conditions period (1931-1960). 
The Atlas Flora Europaeae maps are provided with a resolution of 0.5°. To make them compatible with the 
resolution of the climatic datasets, these maps were downscaled to a 10’x10’ resolution by simply attributing 
the value of the 0.5° cells to the set of corresponding 10’ cells (Figure S1). 
 

 
Figure S1. Current distributions of the three species studied (Tutin et al. 1964-85; completed by Laurent et al. 
2004). 
 
 
To avoid overestimating the amplitude of the niche, the limits chosen for each bioclimatic variable excluded the 
most extreme 2.5% pixels. To reduce the potential overfitting of STASH, we performed re-samplings of the 
Atlas Flora Europaea occurrence map. This is a common technique (e.g. Thuiller et al. 2009), where the 
observed occurrence data is split into a calibration dataset (used to calibrate the model) and a validation 
dataset (used to assess the validity of the model on pseudo-independent data). Here, for each species: 

- The dataset was split with a calibration set containing 30% of the pixels (8630 points); the remaining 
points constituted the validation set; 

- The calibration set was used to determine the bioclimatic limits used by STASH; 
- Given these limits, STASH was run; 
- A specific presence threshold (SPT) was determined on the calibration dataset (see section III A for its 

computation); 
- The SPT was used to transform continuous STASH projections into binary (presence/absence) 

projections; 
- Only those projections made on the validation dataset were conserved.  

This process was repeated 100 times. 
 
The final projection was obtained through a majority-rule consensus among the 100 re-samplings: pixels that 
were projected “present” (above the SPT) more than half of the times when in the validation set were 
considered as “present”. This is what is stored in 
data/projections/projectionsCurrentSTASHBinarized.txt; columns speciesSTASH. Projections in this 
file thus reflect the consensus of on average 70 STASH projections. Note that all pixels belonged to the 
validation set under forecast conditions; hence values stored in data/projections/projectionsA1Fi.txt 
and projectionsB2.txt, columns speciesSTASH, contain the consensus of 100 STASH projections. 
 
In practice, the re-sampling only slightly affected the estimation of the bioclimatic limits. As a result, the 
projections of STASH did not vary much among re-samplings (Figure S2).  
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Figure S2. Map of Europe indicating the frequency at which Pinus 
sylvestris is projected by STASH to be present or absent. The species 
is projected to be present in all 100 re-samplings for dark red pixels; 
in no re-samplings for dark blue pixels. Only a very small proportion 
of pixels, towards the margins of the projected distribution, are not 
consistently projected as either present or absent. The same applied 
to all three scenarios and all three species.  

 
 

STASH output was then transformed into binary projections, with pixels projected as present in more than half 
the validation datasets being considered as “present” (Figure S3). 
 

 
 
 
Figure S3. Binary STASH output for Pinus sylvestris. Red pixels indicate 
locations where the species is considered “present” and blue pixels 
those where the species is absent. Overlaid black dots represent the 
Atlas Flora Europaea map for Pinus sylvestris. 
 
 
 
 

 
Note that this binary output is suitable for use with the conditional consensus method presented in the main 
text, but not for a mean or median consensus. To compute the mean, median and weighted average consensus 
between the different SDMs (Marmion et al. 2009), we thus also generated a continuous STASH output: for 
each pixel, this continuous output was the arithmetic mean of STASH output over the resamplings in which the 
pixel was in the validation dataset. (This continuous output is stored in 
“data/projections/ContinuousSTASHScenario.txt” files, in column “SpeciesSTASH”).  

Parameters used in STASH (or their range across re-samplings) are indicated in Table S1.  

Table S1. Parameters used in STASH. For bioclimatic limits, their range and median across re-samplings are 
indicated (median between brackets). 

 

 

  Fagus sylvatica    
sylvatica 

Quercus robur Pinus sylvestris 

minTc -4.8 – -4.1 (-4.4) -6.5 – -6.1 (-6.3) -14.4 – -14.2 (-14.3) 

maxTc 5.8 – 6.2 (6.0) 6.0 – 6.4 (6.2) 4.1 – 4.6 (4.3) 

minTw 11.9 – 13.2 (12.5) 11.1 – 11.7 (11.4) 8.9 – 9.1 (9.0) 

minGDD 381 – 546 (450) 561 – 686 (621) 221 – 253 (234) 

b 1150 100 100 

k 0.0065 0.05 0.05 

maxDi 

 

0.36 – 0.41 (0.38) 0.33 – 0.34 (0.34) 0.20 – 0.25 (0.23) 

Tl 5 5 -4 

Th 42 42 36 
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B. LPJ 

 
LPJ is a general ecosystem model combining bioclimatic limits to the species’ establishment and survival and 
mechanistic representations of physiology, biochemistry (from the BIOME3 and BIOME4 models, Haxeltine & 
Prentice 1996; Kaplan 2001), vegetation dynamics and carbon and water fluxes (Sitch et al. 2003). It models the 
growth and dynamics of the vegetation in a number of replicate patches per grid cell. The version used in this 
study includes representations of soil hydrology, snow-pack dynamics and soil–vegetation–atmosphere 
exchange of water, as documented by Gerten et al. (2004). 

1. DESCRIPTION OF THE MODEL 

(1) 1. BIOCLIMATIC LIMITS 

 
Four bioclimatic limits determine the species’ envelope:  

- Minimum temperature for survival (Tcoldmins), 
- Minimum temperature for successful seedling establishment (Tcoldmine), 
- Maximum temperature of the coldest month (Tcoldmaxe), above which seedling establishment is 

impossible due to the lack of dormancy, 
- Minimum quantity of growing degree-days for successful establishment (GDD5mine).  

 
These limits determine the suitable zone where the species may grow. They were fixed to values specific to 
each species (as determined by Koca et al., 2006).  
Note that these limits are not (and cannot be) derived from the observed distribution of the species. Hence, no 
re-sampling strategy was performed for LPJ. 

(2) 2. GROWTH 

 
Within the suitable zone, LPJ computes, inter alia, the biomass, net primary productivity and leaf area index of 
plant functional types (PFT) or species (in the present case).  
 
Modelling takes place at the population level with the representation of one “average individual” and a 
population density. The processes taken into account are: 

- Photosynthesis as a function of photosynthetically active radiation, temperature, atmospheric CO2 
concentration and water availability. 

- Respiration as a function of biomass, tissue specific C:N ratio and temperature. Respiration is 
decomposed in heterotrophic and autotrophic (maintenance and growth) respiration. 

- Growth as a function of biomass production and allometric relationships between reproduction, leaf, 
root, sapwood and heartwood. 

- Survival to stresses such as low biomass production, cold, fire and other disturbances. 
- Phenology as a function of daily temperatures above which budburst can occur. 
- Hydrology as a function of soil and vegetation cover parameters (evapotranspiration), temperature 

and precipitation (rain and snow melt). 
- Soil and litter biogeochemistry as a function of temperature, soil moisture and biomass mortality (leaf 

and root turnover). 
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(3) 3. INPUT AND OUTPUT VARIABLES 

 
Input variables are monthly temperature, precipitation and percentage of sunshine for each grid cell, and CO2 
concentration (assumed constant across space). These are downscaled to a daily time step for some processes, 
while other processes (e.g. mortality) require yearly averages. The model was run using a loop of repetitions of 
1901-1930 for 600 spin-up years, after which vegetation had reached an approximate equilibrium with climate; 
simulations were then continued with the complete 1901-2100 climatic data.  
 
LPJ outputs considered in this study are the average net primary productivity, and leaf area index of vegetation 
within each pixel. Since these outputs are extremely correlated, leaf area index was chosen as a proxy for the 
probability of presence. LAI was divided by its maximal value for the “current” dataset, hence yielding to an 
index comprised between 0 and 1 for current climatic conditions. However, this index may reach values higher 
than one for future conditions, due to the fertilizing effect of increased atmospheric CO2 concentration. 

(4) 4. AVAILABILITY AND USE 

LPJ is available from the EMBERS group of Lund University, upon request. Ecosystem process modelling was 
validated with respect to seasonal and interannual variation in carbon and water vapour fluxes (Morales et al. 
2005). LPJ has also been validated as a tool to explain vegetation distribution and dynamic at the plant 
functional type level (Badeck et al. 2001; Smith et al. 2001; Gritti et al. 2006). 
 

2. MODEL PARAMETERIZATION  

 
Each species is defined by a set of parameters describing plant physiognomy, allometry, physiology, phenology 
and bioclimatic limits.  
 
The species were assigned the values ascribed to their respective PFTs (temperate broadleaved summergreens 
for Fagus sylvatica and Quercus robur; boreal needle-leaved evergreen for Pinus sylvestris) in Smith et al. 
(2001). Species-specific values were used when available (Hickler et al. 2004; Koca et al. 2006; Miller et al. 
2008; Garreta et al. 2010). Parameters are given in Table S2. 
 
Table S2. Parameters used in LPJ.  

 Fagus sylvatica Quercus robur Pinus sylvestris 

Bioclimatic limits       

Tcoldmins -4 -7 -35 

Tcoldmine -4 -7 -30 

Tcoldmaxe 6.1 5 3 

GDD5mine 1000 900 400 

Ecophysiology    

Roots distribution (upper/lower soil layer) 0.67/0.33 0.67/0.33 0.67/0.33 

Leaf phenology Summergreen Summergreen Evergreen 

Leaf turnover rate (year
-1

) 1 1 0.33 

SLA (cm
2
.[gC]

-1
) 273 273 93 

Climate zone Temperate Temperate Boreal 

Optimal temperature range for photosynthesis (°C) 15-25 15-25 10-25 

Max establishment (saplings.ha
-1

.yr
-1

) 10 10 10 

Max non-stressed longevity (yr) 200 200 300 
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C. PHENOFIT 

 
The model PHENOFIT (Chuine & Beaubien 2001) relies on the assumption that species adaptation to abiotic 
conditions is tightly related to its capacity to synchronize its annual life cycle with seasonal climatic variations 
directly impacting its survival and reproductive success. It simulates the precise phenology and levels of 
resistance to drought and cold stress of an average individual of a tree species given local climatic conditions to 
yield a reproductive success and a survival probability. The product of survival and reproductive success is used 
as a proxy for fitness, and for the probability of occurrence. This model does not make use the observed 
distribution of the species to produce its output.  
 
Note that this model does not rely on observed species distribution; hence no correction for overfitting could 
be performed.   

1. DESCRIPTION OF THE VERSION OF THE MODEL USED IN THIS STUDY 

(1) 1. PHENOLOGY  

 
Leaf unfolding and flowering dates are determined by daily temperatures using the UniChill model of Chuine 
(2000). Fruit maturation date is calculated following Chuine & Beaubien (2001) for the deciduous species and 
following a degree-day sum for Pinus sylvestris. Leaf senescence is assumed to vary linearly with latitude (Lamb 
1915) in this version of the model. The regression is fitted on leaf colouring dates at several latitudes.  

(2) 2. REPRODUCTIVE SUCCESS 

 
The reproductive output corresponds to the proportion of mature fruits by the end of the year. 
 
It is calculated as the product of fruit maturation success and the proportion of fruits that reach maturation 
(i.e. have not been killed by frost all along the season since the flower primordia). The proportion of fruits that 
reach maturity is calculated following the frost damage model of Leinonen (1996) parameterized for flowers 
and fruits. The success of maturation depends upon the proportion of uninjured leaves available for 
photosynthesis following a sigmoid function with parameter pfe50, the proportion of leaves that reduce by 
50% the photosynthetic assimilates going to the fruits. It depends also on a drought index calculated with a 
water balance using precipitation, actual evapotranspiration and soil water holding capacity. Finally, it depends 
on temperature which determines the course of maturation. Fruits maturation date follows a normal 

distribution within the tree crown defined as  ~ ,cE matmoy sigmaN , with matmoy and sigma expressed 

as a sum of developmental units and sigma chosen so that fruit maturation occurs over a month. 

(3) 3. SURVIVAL TO STRESSES 

 
Two kinds of stress are considered: frost and drought. 
 
A lethal frost temperature is used in the model but never plays a role in determining species range limits.  
 
Frost injury on buds, leaves, flowers and fruits is modelled according to the model of Leinonen (1996). Frost 
hardiness depends upon the organs’ developmental stage, photoperiod and temperature. Frost hardiness is 
highest during the dormancy phase, and lowest during bud burst. Frost can injure buds, leaves, flowers and 
fruits. 
 



9 

 

In this version of PHENOFIT, survival to drought was implemented grossly, and the species were attributed an 
upper and a lower bound of sustainable precipitation. Outside these limits, survival was assumed to be 0.1. 

(4) 4. INPUT AND OUTPUT VARIABLES 

 
In the version of PHENOFIT used in this study, input variables are daily minimal and maximal temperatures, and 
monthly amount of precipitation. The model outputs a proxy for fitness within [0,1], which the product of 
survival and reproductive success, for each cell and each year. For each cell, fitness is averaged over a 20-year 
time period (1981-200 for the “current” climate; 2081-2100 for scenarios) to produce the maps.  

(5) 5. AVAILABILITY AND USE 

 
PHENOFIT is available upon request to Isabelle Chuine (isabelle.chuine@cefe.cnrs.fr). This model has been used 
at the continental scale and validated for a dozen of American tree species (Chuine & Beaubien 2001; Morin et 
al. 2007b; Morin et al. 2008; Morin & Thuiller 2009). 

 

2. MODEL PARAMETERIZATION  

 
Model parameters are provided in table S3. 

(1) 1. PHENOLOGY 

 
The model parameters are found through minimizing the residual sum of squares using the simulated 
annealing algorithm of Metropolis following Chuine et al. 1998. The fitting procedure uses observations of leaf 
unfolding, flowering, fruit maturation and leaf senescence dates, in different populations of the same species. 
These observations were retrieved from the French phenological database (Observatoire des Saisons, 

GDR2968, http://www.gdr2968.cnrs.fr) except for Pinus sylvestris (see below). Leaf unfolding and leaf 

senescence observations encompassed the period 1997-2006; flowering dates were observed in 2006-2008; 
and fruit maturation from 1990 onwards.  
 
Because local adaptation to climate may modify species response to climatic clues, observation sites were 
grouped according to the genetic pool of the observed trees (“provenance regions” as defined by the French 

Forest Inventory, http://agriculture.gouv.fr/foret ). Each phenological model was then calibrated for each 

provenance region, using daily meteorological data from the closest meteorological station (provided by 
MeteoFrance). Whenever possible, adjacent provenance regions which did not significantly differ in their 
phenological response to temperature were combined following Chuine et al. 2000. For Pinus sylvestris, 
phenological observations were too scarce in the database, resulting in doubtful parameter values. We 
therefore used parameters fitted by Kramer (1994) on a German provenance.  

(2) 2. SURVIVAL TO STRESSES 

Precipitation limits determining the resistance to drought stress were taken from the French Forest Inventory, 

http://agriculture.gouv.fr/foret. Lethal temperatures were those identified by Sakai & Larcher (1973). 

Parameters for the frost damage model were those of Leinonen (1996), except the minimum and maximum 
hardiness, which were compiled from the literature (refs. in Morin et al. 2007a). All these parameters were 
species-specific. 

 

mailto:isabelle.chuine@cefe.cnrs.fr
http://www.gdr2968.cnrs.fr/
http://agriculture.gouv.fr/foret
http://agriculture.gouv.fr/foret
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Table S3. Parameters used in PHENOFIT. The number n of observations used to fit the leafing and fructification 
models is given, as well as the proportion of variance in bud burst/fructification dates explained by the model 
(R²). Phenological models for Pinus sylvestris were extracted from Kramer (1994). 

 Fagus sylvatica Quercus robur Pinus 
sylvestris  Prov201 Prov403 Prov602 Prov751 Prov100 Prov201 Prov361 

Leaf unfolding date 
a 0.54 3.65 1.04 1.13 1.14 0.56 0.96 0,06 
b -19.52 -22.01 -26.68 -28.43 -22.04 -3.52 -21.51 1.00 
c -19.86 11.00 -6.22 -13.57 -1.71 0.18 -4.20 6.00 
d -40 -0.10 -40 -7.13 -40 -40 -0.35 -0,11 
e 8.40 2.73 8.55 9.94 6.72 9.92 6.11 37.00 
C* 202.51 12.75 218.85 136.43 182.39 4.82 210.79 85.00 
F* 9.50 121.00 4.20 20.50 19.90 31.00 10.60 2.40 
n 17 15 14 11 28 19 26  
R² 0.641 0.840 0.697 0.969 0.656 0.705 0.531  
Flowering date 
F** 18.50 129.50 12.70 29.00 25.39 35.80 15.92 2.20 
Fruit maturation date 
g -16.74 -10.15 -0.25 -3.97 N.A. 
h 14.72 13.96 18.10 9.46 N.A. 
Fcrit 9.26 5.97 30.28 120.82 500.00 
Top 5.00 5.00 6.56 19.77 N.A. 
matmoy 104.50 136.34 102.95 47.77 N.A. 
sigma 50.14 37.44 46.34 28.21 57.00 
pfe50 0.4 0.4 0.4 0.4 0.4 
Tb N.A. N.A. N.A. N.A. 5.00 
n 23 18 27 74  
R² 0.489 0.428 0.278 0.446  
Frost hardiness 
T1 10 10 10 
T2  -16 -16 -16 
NL1 10 10 10 
NL2 16 16 16 
Fruit    
Frmax1  -5 -12 -10 
Frmax2  -20 -50 -50 
Leaf       
Flmin -4 -7 -5 
Ftlmax  -13 -41 -47 
Fplmax -7 -21 -18,5 
Flower       
Ffmin -4 -7 -10 
Ftfmax  -12 -60 -47 
Fpfmax  -6 -20 -18,5 
Precipitation Limits 
PPmin 730 600 560 
PPmax 1440 2030 3200 
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II. CLIMATE DESCRIPTION 

 
Because our consensus model is a statistical one, we chose to eliminate multicollinearity among environmental 
descriptors through describing the environment by a restricted number of independent composite variables. 
These were obtained through summarising the variation of eight potentially correlated climatic descriptors in a 
Principal Component Analysis (PCA). These descriptors included five climatic descriptors computed by STASH 
(mean temperature of coldest month Tcold, mean temperature of warmest month Twarm, number of chilling 
days NBChi, drought index DRI5, growing day degrees GDD5), the total amount of precipitation (PrecTot), the 
amount of precipitation when temperature is above 5°C (Prec5), and the coefficient of variation of 
precipitations among seasons (CVprec, the standard deviation of precipitation among seasons, scaled by 
average seasonal amount of precipitation).  
 
The variance of each descriptor was similar among the three datasets (current, A1Fi and B2): maximal to 
minimal variance ratios were all below 3. It was thus very unlikely that the structure among variables induced 
by one of the three datasets would be masked by different structures induced by the other two datasets. 
Moreover, the principal axes of the PCA carried on individual datasets did not differ qualitatively, the angles 
between corresponding principal component axes in the multivariate space for the three datasets were below 
30° (Fig. S4; compare panels a, c, e and b, d, f). To obtain principal components and axes, we thus performed a 
PCA on the concatenation of the three datasets (Fig. S4, panels g, h). 

 
 
 
 
 
 
 
 
 
 
 
Figure S4: Correlation 
circles of the Principal 
Components Analysis for 
current climates (a, b), 
2100 A1Fi scenario (c, d), 
2100 B2 scenario (e, f) and 
all climates together (g, h). 
These circles are shown in 
two planes of the 
multivariate space: that 
defined by PC1 and PC2 (a, 
c, e, g) and that defined by 
PC2 and PC3 (b, d, f, h). 
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The first principal component (PC1) corresponded to a temperature axis; it gathered the five descriptors used 
by STASH, and explained 56% of the total variance. PC2 explained 25% of the total variance, and was carried by 
the descriptors of the amount of precipitation (PrecTot and Prec5). PC3 explained 11% of the total variance, 
and was mostly carried by the seasonality of precipitation (CVprec). These three axes together explained 92.8% 
of the total variance, and were used as synthetic mutually independent climate variables. Figure S5 shows how 
European climates are described by PC1, PC2 and PC3.  

 

Figure S5: Coordinates of current (left column) and future (middle and right columns) climates in the principal 
component analysis. Axis 1 corresponds mostly to temperatures, with higher values denoting colder climates. 
Axis 2 corresponds to total precipitation, with higher values denoting wetter climates. Axis 3 is mostly carried 
by the seasonality of precipitations, with high values denoting regular amounts of precipitation across seasons.  
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III. CONSENSUS MODEL 

From this section and until the end of this file, all operations are provided in the attached R script 
“ConsensusModel.R”. Data are located in folder /data/; the format of the data is explained in the script. 

A. DETERMINE A SPECIFIC PRESENCE THRESHOLD (UNIQUE TO EACH SPECIES 

AND MODEL, WILL MAXIMIZE THE SUM (SENSITIVITY + SPECIFICITY)).  

Script “ConsensusModel.R”  lines 40-45.  
 
For STASH, the SPT was determined for each re-sampling of the distribution map (see section I A 2). For LPJ and 
Phenofit, the SPT was determined only once. 
 
The threshold is determined using the data shown on the ROC plot of the model output. This plot shows the 
sensitivity of the model (ordinates, “Hit rate”, i.e. % of pixels where the species is present, and predicted as 
such) as a function of (1- its specificity) (abscissas, the “False Alarm Rate”; i.e. the % of pixels where the species 
is present, but projected as present). Each point of this curve corresponds to the sensitivity and (1-specificity) 
of the model, when model outputs above some threshold t are attributed the value 1 (present) and those 
below t are attributed 0 (absent). The whole curve is obtained by varying t. An example is shown on Figure S6.  

 
 
 
 
Figure S6. ROC plot for the projection of Pinus sylvestris by 
LPJ. The values on the curve show 10 thresholds (i.e. when 
t=0.1, the sensitivity is very high, but the specificity low; 
when t=0.9 this is the opposite: almost no points are 
projected as present [i.e. have LPJ output>0.9], such that 
sensitivity is necessarily low). 

 

A perfect model would yield a point in the top left corner of 
the graph. Maximizing the sum of the sensitivity and 
specificity is somehow trying to find the best compromise, 
that is, the threshold t that leads closest to that top left 
corner. 

 
The function roc.plot (library verification) computes that plot and stores the points’ coordinates in 
$plot.data, an array whose first layer only is used here. Column 1 contains the thresholds (101 equally spaced 
in our script); columns 2 and 3 contain the hit rate and false alarm rates (coordinates of the points on the ROC 
plot).  
 
Function maxss extracts the value of t corresponding to the maximum of (sensitivity+specificity) from such a 
table:  

maxss <- function(tab) { 
   res<-matrix(ncol=2, nrow=0) 
   for (i in 2:dim(tab)[1]) res <- rbind(res, c(tab[i,1], (tab[i,2]+(1-tab[i,3])))) 
   res2 <- res[which(res[,2]==max(res[,2])),1]  
   res2} 
 

Hence the SPT for Pinus sylvestris as projected by LPJ: 

 maxss(roc.plot(dataCurrent$PinusPA, dataCurrent$PinusLPJ, 
thresholds=seq(0,1,0.01))$plot.data[,,1]) 

[1] 0.59 
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B. DATA SUBSETTING 

Script “ConsensusModel.R” line 63.  

For each species and each climatic dataset, each pixel in the simulation window was attributed to one of 2
3
 = 8 

subsets, indexed by S, corresponding to the triplets of the combinations of {STASH, LPJ, PHENOFIT} projected 
presence (above the SPT) or absence (below the SPT). For example, {1,0,0} would be one such triplet, 
corresponding to STASH projecting occurrence, and LPJ and PHENOFIT projecting absence of the species in the 
pixel.  
This was done using the CreateSubsets function, which creates a list, each element of the list corresponding to 
one combination of binary {STASH, LPJ, PHENOFIT} projected presences/absences (using the SPT as defined in 
section III A). Each element of the list contains the subset of the dataset presenting that combination of 
outputs.  

CreateSubsets <- function(dataset) { 
subdata <- list() 
i <- 0 
for (subb in namsub) { 
i <- i+1 
mod1<-F  
mod2<-F 
mod3 <-F 
eval(parse(text=paste("if (substr(subb, start=1, stop=1)=='p') mod1 <- T " , sep=""))) 
eval(parse(text=paste("if (substr(subb, start=2, stop=2)=='p') mod2 <- T " , sep=""))) 
eval(parse(text=paste("if (substr(subb, start=3, stop=3)=='p') mod3 <- T " , sep=""))) 
eval(parse(text=paste("subdata[[", i, "]] <-subset(", dataset, ",subset=(", dataset, "$", 

species[spec], models[1], if(mod1)  " >= " else " < " , species[spec], models[1], 
"threshold & ", dataset, "$", species[spec], models[2],  if(mod2) " >= " else " < ", 
species[spec], models[2], "threshold & ", dataset, "$", species[spec], models[3],  
if(mod3) " >= " else " < ", species[spec], models[3], "threshold)) ", sep=""))) 

 } 
return(subdata) 
} 
 

An example of the result is provided on Figure S7. 
 
Figure S7. Data subsets obtained for Pinus sylvestris. The first three maps show the binary outputs of each 
SDM; and the fourth map indicates which pixels belong to which subset (indicated by a color code, with no 
hierarchy between colors). Note that subset 3 (medium blue) has few pixels [5]; it has even fewer under future 
conditions [3 in each scenario]. No model for deviance will be evaluated for subsets covering <100 pixels – this 
is the only one in our dataset.  Code:  

spec=3; # Pinus sylvestris 
scen=1 # Current climates 
subdataCurrent <- CreateSubsets('dataCurrent') 

 

 
Because model projections vary among species, the eight subsets have to be defined for each species 
separately.  
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C. DETERMINE THE PROBABILITY OF OCCURRENCE OF THE SPECIES WITHIN 

EACH SUBSET  

Script “ConsensusModel.R” line 66.  

This is simply the observed prevalence of the species over all points belonging to the same subset. For example, 
the probability of occurrence over all points belonging to subset 1 (all models predict absence; dark blue cluster 
on the map above) is the proportion of the dark blue pixels in which the species is actually observed.  
 
DefinePOccurrence function defines one probability of occurrence for each of the subsets (as obtained by the 
CreateSubsets function). 

DefinePOccurrence <- function(liste, sp) {  
# where liste is a subsetted dataset, obtained by “CreateSubsets”, and sp the index of the 

species 
 pocc <- vector() 
 for(i in 1:length(liste)) { 
 eval(parse(text=paste("pocc[", i, "] <- dim(subset(liste[[", i, "]], liste[[", i, 

"]][,'", species[sp], "PA']==1))[1]/dim(liste[[", i, "]])[1]", sep=""))) 
 } # i.e.: pocc=n(occurrences within subset)/n(point in subset) 
 pocc 
 } 
 
poccurPinus <- DefinePOccurrence(subdataCurrent, spec) 
 
> round(poccurPinus,spec) 
[1] 0.146 0.251 0.000 0.035 0.415 0.751 0.236 0.774 
# (note the subset with p=0 is the one containing only 5 data points) 
 

Storage: Script “ConsensusModel.R” line 69.  
These proportions are stored as an additional column in the data frame containing all relevant information 
(dataCurrent here). This column will be labeled pSpecies (here, pPinus) and will contain, for each pixel, the 
relevant value of poccurSpecies (i.e. the one corresponding to the subset to which the pixel belongs). For 
example, all pixels corresponding to subset 1 (“all models projected absence”) will receive the value 0.146. This 
is done using the StoreProb function.  

dataCurrent <- StoreProb(subdataCurrent, poccurPinus, dataCurrent) 
 

(where the first argument gives the subsetted dataset (where information about the subset can be found), the 
second gives the vector containing the probabilities of occurrence corresponding to each subset; and the third 
argument is the target data frame, to which the resulting vector will be bound.  
 
An example of the projected probability of occurrence is given on Figure S8. 

 
 
 
 
Figure S8. Projected probability of occurrence for Pinus 
sylvestris. Each subset (as defined on Figure S7, right panel) 
receives a different probability of occurrence (some subsets 
have close values [see above], hence fewer than 8 colors can 
be distinguished). 
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D. ESTIMATE THE ASSOCIATED UNCERTAINTY 

1. COMPUTE THE OBSERVED DEVIANCE OF THE CONSENSUS MODEL’S OUTPUT TO 

OBSERVED OCCURRENCE DATA.  

Script “ConsensusModel.R” line 72.  
 

For each pixel, the deviance of the “conditional consensus” to the complete model (i.e. the observed 
occurrences) was computed as: 

      2ln ln 1 ln 1S Sdev obs p obs p            (7) 

where obs is the observed occurrence (0 or 1) and 
Sp the estimated probability of occurrence for the relevant 

subset. Note that this is the exact deviance of projections (
Sp ) with respect to the observed occurrences (i.e. 

to a perfect model).  
 
This was done using the StoreDeviance function. Note this function just has to be run for Current (reference) 
data, running it on other datasets would be irrelevant (no PA data being available). This function calls function 
deviancetot, which itself calls devianceind. devianceind computes minus twice the log likelihood :  

 
2log( )

2log(1 )

S

S

p if the species is present
devianceind

p if it is absent


 

 

 (8) 

devianceind <- function(obs, pred) {apply(cbind(obs, pred), FUN=function(tab) { 
-2*((tab[1]*log(tab[2])) + (1-tab[1]) * log(1-tab[2])) 
}, MARGIN=1)} 

 

 
Function deviancetot sums deviance over all pixels: 

deviancetot <- function(obs,pred) sum(devianceind(obs,pred)) 
 

 
Within each subset, deviance can take at most two values, so that the ratio of the difference between observed 

and minimum deviance to its maximum span (thereafter the “standardised deviance”, noted  ) is 0 or 1. 

Function StoreDeviance stores the pixel-by-pixel observed deviance into the target dataset (Current), in the 
form of two additional columns: 

 "devspecies" contains the inferred probability of occurrence for each pixel;  

 "stddevspecies" stores the stardardized deviance δ: min( )

max( ) min( )

deviance deviance

deviance deviance







, 

 where min(deviance) and max(deviance) depend upon pS:       min min 2ln , 2ln 1S Sdeviance p p    .  

StoreDeviance <- function (target) { 
 eval(parse(text=paste("dev", species[spec], " <-devianceind(target[,'", species[spec], 

"PA'], target[,'p", species[spec], "'])", sep=""))) 
  
eval(parse(text=paste("target<-as.data.frame(cbind(target,dev", species[spec], "))", sep=""))) 
  
eval(parse(text=paste("stddev", species[spec], " <- round(apply( cbind(target[,'p", 

species[spec], "'], target[,'dev", species[spec], "']), FUN= function(vect) (vect[2]-
min(-2*log(vect[1]), -2*log(1-vect[1]))) / abs(2*log(vect[1]/(1-vect[1]))), MARGIN=1))", 
sep=""))) 

  
eval(parse(text=paste("target<-as.data.frame(cbind(target, stddev", species[spec], "))", 

sep=""))) 
  
target} 
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Figure S9 shows the maps of observed and standardized deviance look like, for Pinus sylvestris: 

 

Figure S9. Observed deviance (left) and modelled standardized deviance (right), for Pinus sylvestris. 

The data subsets have to be re-written so that they now contain information about deviance (Script 
“ConsensusModel.R” line 75).  

 

2. ESTIMATE HOW THE OBSERVED STANDARDIZED DEVIANCE VARIES WITH THE 

ENVIRONMENT. 

(The environment is defined by three independent axes, obtained by a PCA on environmental variables; section 

II.) 

Script “ConsensusModel.R” lines 78, 81.  
 

The standardised deviance δ was modelled as a Bernoulli process. The logit of its mean was assumed to be a 
polynomial function of the three synthetic climatic variables with polynomial degree ≤ 2: 
   0, 11, 21,

2 2 2

12, 22, 331 ,, 2logit = S SS S SS SPC1 PC1 PC2 PC2 PC3 PC3                (9) 

Twenty-seven models for   were considered for each species and each subset, corresponding to the 

combinations of 1,i S  and 2,i S  (with all models including 0,S , and models including 2,i S  constrained to 

also include 1,i S ). 

 
The 27 models are stored in separate files, named ‘formulae/models_deviance_Species.txt’. Here are the 
models considered for Pinus sylvestris (the same models were considered for all three species): 

1                                stddevPinus~1 
2                           stddevPinus~1+PC11 
3                           stddevPinus~1+PC21 
4                           stddevPinus~1+PC31 
5                      stddevPinus~1+PC11+PC12 
6                      stddevPinus~1+PC11+PC31 
7                      stddevPinus~1+PC21+PC31 
8                      stddevPinus~1+PC11+PC21 
9                 stddevPinus~1+PC11+PC21+PC22 
10                stddevPinus~1+PC11+PC12+PC21 
11           stddevPinus~1+PC11+PC12+PC21+PC22 
12                     stddevPinus~1+PC11+PC31 
13                stddevPinus~1+PC11+PC31+PC32 
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14                stddevPinus~1+PC11+PC12+PC31 
15           stddevPinus~1+PC11+PC12+PC31+PC32 
16                     stddevPinus~1+PC21+PC31 
17                stddevPinus~1+PC21+PC31+PC32 
18                stddevPinus~1+PC21+PC22+PC31 
19           stddevPinus~1+PC21+PC22+PC31+PC32 
20                stddevPinus~1+PC11+PC21+PC31 
21           stddevPinus~1+PC11+PC21+PC31+PC32 
22           stddevPinus~1+PC11+PC21+PC22+PC31 
23      stddevPinus~1+PC11+PC21+PC22+PC31+PC32 
24           stddevPinus~1+PC11+PC12+PC21+PC31 
25      stddevPinus~1+PC11+PC12+PC21+PC31+PC32 
26      stddevPinus~1+PC11+PC12+PC21+PC22+PC31 
27 stddevPinus~1+PC11+PC12+PC21+PC22+PC31+PC32 
 
 

Each model is evaluated, together with the associated log-likelihood and Akaike Information Criterion (AIC). 
This s done using function AICtableFunc, which evaluates models stored in the appropriate formulae file, and 
stores their AIC in a table, whose rows are models and columns are subsets.  
 

AICtableFunc <- function (listeAIC) { 
 usable <- DimSubsets(listeAIC) 
 eval(parse(text=paste("nmodglm <- length(formulaeDev", species[spec], "[,1])", sep=""))) 
 resAIC <- matrix(ncol=length(listeAIC),nrow=nmodglm) 
 for (j in 1:length(listeAIC)) { 
  if(usable$flag[j]) { 
   for(i in 1:nmodglm) {  # evaluate the GLMs 
    eval(parse(text=paste("try(resAIC[i,j] <- 

glm(formula=as.formula(as.character(formulaeDev", species[spec], "[i,1])), family = 
binomial(link='", "logit", "'), data=listeAIC[[j]])$aic)", sep="")))  

   } 
  } 
  else resAIC[,j] <- c(rep(0, nmodglm)) 
 } 
 resAIC 
} 

 
Here is the AIC table obtained for Pinus sylvestris:  

formulaeDevPinus <- read.table('formulae/models_deviance_Pinus.txt', header=F) 
subdataCurrent <- CreateSubsets('dataCurrent') 
AICtablePinus <- AICtableFunc(subdataCurrent) 
round(AICtablePinus,0) 
      [,1] [,2] [,3] [,4] [,5] [,6] [,7]  [,8] 
 [1,] 3735  325    0   37 3888 5226  697 16812 
 [2,] 2726  283    0   38 2597 4193  661 14457 
 [3,] 3733  289    0   22 3889 4983  696 15611 
 [4,] 3625  223    0   19 2999 3897  699 15176 
 [5,] 2726  227    0   40 2599 4187  654 14454 
 [6,] 2702  218    0   20 2512 3820  661 14026 
 [7,] 3606  212    0   18 2913 3755  698 14331 
 [8,] 2704  284    0   23 2574 4146  663 13900 
 [9,] 2599  285    0   25 2561 3997  665 13872 
[10,] 2673  229    0   24 2576 4130  656 13891 
[11,] 2588  230    0   26 2563 3994  658 13861 
[12,] 2702  218    0   20 2512 3820  661 14026 
[13,] 2690  220    0   21 2483 3660  663 13989 
[14,] 2695  195    0   21 2511 3816  656 14017 
[15,] 2676  197    0   23 2483 3656  654 13978 
[16,] 3606  212    0   18 2913 3755  698 14331 
[17,] 3529  214    0   20 2830 3531  699 14232 
[18,] 3544  210    0   20 2907 3737  700 14333 
[19,] 3423  212    0   22 2805 3533  701 14232 
[20,] 2668  213    0   19 2458 3727  663 13509 
[21,] 2656  214    0   21 2440 3506  665 13421 
[22,] 2586  212    0   20 2420 3711  665 13505 
[23,] 2553  214    0   22 2395 3508  667 13412 
[24,] 2667  196    0   20 2460 3717  658 13490 
[25,] 2657  198    0   22 2442 3501  656 13400 
[26,] 2587  190    0   22 2422 3706  659 13487 
[27,] 2554  191    0   23 2397 3503  657 13391 

 
 
Note that for subset 3, no model was evaluated (all models receiving a zero just in order to fill the table). In 
some cases, a number of models display very close AICs (e.g. for subset 7). 
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Instead of choosing the best model among those tested, we will use all models, weighted by their Akaike 
weights w (Burnham & Anderson 2002):  
 

 

 

min( ) /2

( )
min( ) /2

1

model

m

AIC AIC

model n models
AIC AIC

m

e
w

e










   (10) 

 
The AkaikeWeightsFunc function computes these weights: 

AkaikeWeightsFunc <- function (tab) { 
  resAW <- matrix(nrow=dim(tab)[1], ncol=dim(tab)[2]) 
  for (i in 1: dim(tab)[2]) { 
   for (j in 1:dim(tab)[1])  
    resAW[j,i] <- exp(-(tab[j,i]-min(tab[,i]))/2) 
   resAW[,i] <- resAW[,i] / sum(resAW[,i])     
   } 
  resAW 
  } 

 
Which gives the following table of Akaike weights for Pinus sylvestris:  

AkaikeweightsPinus <- AkaikeWeightsFunc(AICtablePinus) 
round(AkaikeweightsPinus,3) 
      [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8] 
 [1,] 0.000 0.000 0.037 0.000 0.000 0.000 0.000 0.000 
 [2,] 0.000 0.000 0.037 0.000 0.000 0.000 0.008 0.000 
 [3,] 0.000 0.000 0.037 0.018 0.000 0.000 0.000 0.000 
 [4,] 0.000 0.000 0.037 0.099 0.000 0.000 0.000 0.000 
 [5,] 0.000 0.000 0.037 0.000 0.000 0.000 0.255 0.000 
 [6,] 0.000 0.000 0.037 0.063 0.000 0.000 0.006 0.000 
 [7,] 0.000 0.000 0.037 0.129 0.000 0.000 0.000 0.000 
 [8,] 0.000 0.000 0.037 0.009 0.000 0.000 0.003 0.000 
 [9,] 0.000 0.000 0.037 0.003 0.000 0.000 0.001 0.000 
[10,] 0.000 0.000 0.037 0.006 0.000 0.000 0.094 0.000 
[11,] 0.000 0.000 0.037 0.002 0.000 0.000 0.039 0.000 
[12,] 0.000 0.000 0.037 0.063 0.000 0.000 0.006 0.000 
[13,] 0.000 0.000 0.037 0.024 0.000 0.000 0.003 0.000 
[14,] 0.000 0.047 0.037 0.030 0.000 0.000 0.097 0.000 
[15,] 0.000 0.018 0.037 0.012 0.000 0.000 0.281 0.000 
[16,] 0.000 0.000 0.037 0.129 0.000 0.000 0.000 0.000 
[17,] 0.000 0.000 0.037 0.050 0.000 0.000 0.000 0.000 
[18,] 0.000 0.000 0.037 0.053 0.000 0.000 0.000 0.000 
[19,] 0.000 0.000 0.037 0.021 0.000 0.000 0.000 0.000 
[20,] 0.000 0.000 0.037 0.093 0.000 0.000 0.002 0.000 
[21,] 0.000 0.000 0.037 0.035 0.000 0.044 0.001 0.000 
[22,] 0.000 0.000 0.037 0.046 0.000 0.000 0.001 0.000 
[23,] 0.567 0.000 0.037 0.020 0.731 0.018 0.000 0.000 
[24,] 0.000 0.021 0.037 0.043 0.000 0.000 0.036 0.000 
[25,] 0.000 0.009 0.037 0.018 0.000 0.686 0.108 0.012 
[26,] 0.000 0.601 0.037 0.023 0.000 0.000 0.016 0.000 
[27,] 0.433 0.304 0.037 0.012 0.269 0.252 0.042 0.988 
 

While in some subsets (e.g. subset 8) one model contributes to most of the multimodel, for other subsets, a 
larger number of models contribute to the multimodel (e.g. subset 7). (Again here, subset 3 will not be used to 
predict deviance – deviances will be set to 0 for the 5 pixels concerned).  
 



20 

 

 

E. MODEL AVERAGING: ESTIMATE THE MODELED DEVIANCES, GIVEN THE 

ENVIRONMENTAL VARIABLES.  

Script “ConsensusModel.R” line 84. 
 
Within each subset, modeled deviance is projected according to the 27 models identified above, and deviances 
are weighted according to their Akaike weights: 

 
, ,

24
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jdev w dev


  (11) 

This is done using function predSTDDevianceFunc.  
 

predSTDDevianceFunc <- function(scen, aw, spec) { #scen=scenario (#);  
# aw=Akaike weights table; spec=species (#) 

 
# this function is run both for current and future datasets:  

 
 eval(parse(text=paste("listeCurr <- CreateSubsets('data", scenarios[1], "')", sep=""))) 
 eval(parse(text=paste("listescen <- CreateSubsets('data", scenarios[scen],"')", 

sep=""))) 
 
# modelled deviances will be stored in the list “resultSimDev”  

 resultSimDev <- list() 
 
# “rowNames” is used to keep track of the original position of each pixel in the 
original dataset:  

 rowNames <- list() 
 
# “usable” identifies the pixels belonging to subsets for which models for deviance can 
be estimated,  
# i.e. to subsets harboring more than 100 pixels in the “Current” dataset.  
# If a subset of the “Current” dataset happened to gather fewer than 100 pixels, then no 
model for deviance is estimated (thus, no projections will be made for future deviance).  
# In practice, there is 1 such subset in our data, harboring 5 pixels under current 
conditions and 12-26 pixels under scenarios.  
 usable <- DimSubsets(listeCurr)$flag * DimSubsets(listescen)$flag 

  
 

# dime is a vector storing the numbers of pixels in each subset, for the scenario 
considered.  
dime <- DimSubsets(listescen)$dimsub 

  
 # nmodglm will store the number of models evaluated for each subset (27 in our case) 

eval(parse(text=paste("nmodglm <- length(formulaeDev", species[spec], "[,1])", sep=""))) 
 
 # Results will be stored in the “target” dataset, i.e. the “dataCurrent”, “dataA1Fi”, or 

“dataB2” datasets 
 eval(parse(text=paste("target <- data", scenarios[scen], sep=""))) 
 
 # Each subset is treated separately 
 for (it in 1:length(namsub)) { 
  # and only if it is usable (i.e. the corresponding subset in the “Current” dataset has 

> 100 pixels) 
  if (usable[it]==1) { 
  # predict values for deviance according to the nmodglm models. Store it in the list 

“resultSimDev”, which will contain 8 elements (one per subset), each consisting of a 
matrix with nmodglm columns and npixels rows.  

  eval(parse(text=paste("resultSimDev[[", it, "]] <- rbind(sapply(1:nmodglm,function(ii) 
predict(glm(formula=as.formula(as.character(formulaeDev", species[spec], "[ii,1])), 
family = binomial(link='logit'), data=listeCurr[[", it, "]]), type='r', 
newdata=listescen[[", it, "]]))) %*% aw[,", it, "]", sep=""))) 

  # Initial row names (=order) are stored in “rowNames”.  
  eval(parse(text=paste("rowNames[[", it, "]] <- row.names(listescen[[", it, "]])", 

sep=""))) 
  } 
 
 # If no projections can be made for this subset, all points will (arbitrarily) receive 

the value “0”; row names will be stored in “rowNames” as well. 
  if (usable[it]==0) { 
   if(dime[it]>0) { 
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    eval(parse(text=paste("resultSimDev[[", it, "]] <- c(rep(0,dime[", it, 
"]))", sep=""))) 

   } 
   else { 
    resultSimDev[[it]] <- NULL 
   } 
   eval(parse(text=paste("rowNames[[", it, "]] <- row.names(listescen[[", it, 

"]])", sep=""))) 
  } 
 } 
 
 
 # Projections made for each subset are bound together 
 stddevproj <- matrix(ncol=2) 
 for(ite in 1:length(namsub)) { if(length(resultSimDev[[ite]]) > 1) stddevproj <- 

rbind(stddevproj, cbind(resultSimDev[[ite]], rowNames[[ite]])) } 
 # remove the first row of stddvproj (containing “NA NA”) 
 stddevproj <- stddevproj[2:(npix+1),] 
 # Order the rows 
 stddevproj <- stddevproj[order(as.numeric(stddevproj[,2])),] 
  
 # “Unstandardize” the standardized deviance and store it into “predDevianceSpecies” 

eval(parse(text=paste("predDeviance", species[spec], " <- 
apply(cbind(as.numeric(target[,'p", species[spec], "']), as.numeric(stddevproj[,1])), 
FUN= function(vect) (vect[2] * abs (2* log(vect[1] / (1-vect[1]) ) ) ) + min (-
2*log(vect[1]), -2*log(1-vect[1])), MARGIN=1)", sep=""))) 

  
# Bind this “predicted deviance” to the “target” data frame.  
eval(parse(text=paste("target <- cbind(target, predDeviance", species[spec], ")", 
sep=""))) 

 target 
}  

 
Observed and projected occurrence and deviance are shown on Figure S10.  
 
 
Figure S10: observed occurrence (top left), modeled occurrence (top right), observed (bottom left) and 
modeled deviances (bottom right. This figure is provided by line 87 of the “ConsensusModel.R” script, using 
function CurrentPoccAndDevPic (Code: dataCurrent <- predSTDDevianceFunc(1, AkaikeweightsPinus, 
spec); CurrentPoccAndDevPic(spec)). 
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IV. FORECASTS 

A. FORECASTS OF THE SDMS 

1. SCENARIO A1FI, 2080-2100 

These are shown on Figure S11.  

Figure S11. SDM outputs for the A1Fi scenario (period 2080-2100). Darker shades indicate higher values of 
SDM outputs. 
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2. SCENARIO B2, 2080-2100 

SDM outputs are shown on Figure S12.  

Figure S12. SDM outputs for the B2 scenario (period 2080-2100). Darker shades indicate higher values of SDM 
outputs. 

 

 

 

 



24 

 

 

B. FORECASTS OF THE PROBABILITY OF OCCURRENCE USING THE 

CONDITIONAL CONSENSUS.  

Script “ConsensusModel.R” lines 101-104. 

Model outputs were transformed into presences/absences using the SPT, as defined above (script line 101). 
This generates eight subsets of {STASH, LPJ, Phenofit} projected presence/absence; each subset receives the 
probability of occurrence associated to that subset under current conditions (e.g. the {absence, absence, 
absence} dataset for Pinus will receive a probability of occurrence of 0.14 under future conditions, as under 
current conditions). These probabilities are stored in the relevant datasets, as an extra column named 
‘pSpecies’ (e.g. ‘pPinus’). This is done by the StoreProb function (described above).  
 

C. FORECASTS OF THE EXPECTED DEVIANCE (UNCERTAINTY).  

Script “ConsensusModel.R” line 107. 
 

The expected deviance is obtained, as for the current dataset, by extrapolating the (in our case 27) GLMs 
describing the variation of standardized deviance as a function of environmental variables, using the forecast 
conditions; averaging these projections using the relevant Akaike weights; and un-standardize the projected 
deviance. This is done by the predSTDDevianceFunc function (described above).  
 
Figure S13 shows the projected occurrence and projected deviance (uncertainties) for the three climatic 
datasets, for Pinus sylvestris.  
 
Figure S13. Projected occurrences (top row) and projected deviances (uncertainties; bottom row) for all 
climatic datasets (Current [left], A1Fi [middle], B2 [right]). This image is generated by function 
ProjectedPoccAndDevPic. 
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V. OTHER CONSENSUS MODELS& MODEL EVALUATION 

A. BUILD OTHER CONSENSUS MODELS 

Script “ConsensusModel.R” lines 145-169. 
 
We also generated three consensus models for each species, using methods described in Marmion et al. 
(2009).  
To this aim, it is necessary to reload the dataset, this time using the continuous projections of STASH (see 
section I A 2) (“ConsensusModel.R” lines 138-143). 
 
The Mean consensus attributes to each pixel the mean probability of occurrence generated by the three SDMs 
(note that the three models used here do not generate probabilities, but proxies of such probabilities): 

 
,
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i m i
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MeanConsensus p
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   (12) 

where ,m ip  is the output of model m for pixel i, and n the number of SDMs (it is computed on line 160 of the 

script “ConsensusModel.R”). 
 
The Median consensus attributes to each pixel the median of the outputs generated by the three SDMs. It is 
computed on line 163 of the script “ConsensusModel.R”. 
 
The Weighted Average (WA) consensus weighs each SDM’s output by the SDM’s AUC (Area Under the [Receiver 
Operating] Curve):  
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(see also equation (1) in Marmion et al. 2009). This requires computing the AUC of each SDM (Script 
“ConsensusModel.R” lines 145-150), and the WA consensus is computed on line 166, using the function WAfunc.  

WAfunc <- function (datas) { 
 res <- matrix(nrow=dim(datas)[1], ncol=length(models)) 
 for(aa in 1:length(models)) { 
  res[,aa] <- (AUCm[aa] * datas[,aa])/sum(AUCm) 
 } 
 apply(res, FUN=sum, MARGIN=1) 
 }  

Projections made by these three consensus methods are stored in the objects “dataScenario” as three 
additional columns per species and per scenario (“SpeciesMeanCons”, “SpeciesMedianCons”, 
“SpeciesWACons”) (line 169). 
 

B. EVALUATE SDMS AND CONSENSUS MODELS.  

Script “ConsensusModel.R” lines 128-228. 
 
The (in our case, three) SDMs and the four consensi (Mean, Median, WA and Conditional) are evaluated using 
several measures:  

- AUC, using function “roc.plot” from library verification (Script “ConsensusModel.R” lines 
171-179)  
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- The rate of commission error (proportion of pixels wrongly projected as present, out of the 
total number of pixels), using function “CommissionError” (Script “ConsensusModel.R” lines 
197-206). This measure needs the specific presence thresholds to be computed for all models 
(in particular, the consensus models for which it had not been done previously – lines 181-
192). 

CommissionError <- function(obs,pred,thresh) { 
 mean(apply(cbind(obs,pred), FUN=function(d) if(d[1]==0 & d[2]>=thresh) 1 else 0, 

MARGIN=1))} 

- The rate of omission error (proportion of pixels wrongly projected as absent, as compared to 
the total number of pixels), using function “OmissionError” (Script “ConsensusModel.R” lines 
208-217)  

OmissionError <- function(obs,pred,thresh) { 
 mean(apply(cbind(obs,pred), FUN=function(d) if(d[1]==1 & d[2]<=thresh) 1 else 0, 

MARGIN=1))} 

- The accuracy (proportion of correctly predicted pixels – accuracy, omission error rate and 
commission error rate thus sum to 1) (Script “ConsensusModel.R” line 221). 

 
Accuracy measures are output in a separate file for each species 
(“results/AccuracyMeasures_Species.txt”). 
 
For example, for Pinus sylvestris, here is what it looks like: 

 
SPT AUC Accuracy (%) 

Omission 
error (%) 

Commission 
errror (%) 

LPJ 0.59 0.687 73.6 2.6 23.9 

Pheno 0.70 0.685 66.8 18.7 14.5 

STASH 0.30 0.638 75.6 6.9 17.5 

ConditionalConsensus 0.75 0.744 76.4 7.2 16.4 

MeanConsensus 0.54 0.683 70.0 13.1 16.9 

MedianConsensus 0.31 0.669 71.6 4.8 23.6 

WAConsensus 0.55 0.684 69.9 13.3 16.9 
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C. PROBABILITIES OF PRESENCE PROJECTED BY THE CONSENSUS MODEL; 

NUMBERS OF POINTS IN EACH SUBSET OF THE DATA 

The conditional consensus model predicts one average probability of presence for each of the eight subsets 

corresponding to the combinations of {STASH, LPJ, PHENOFIT} predicted occurrence. In the following table, 

these probabilities of presence are indicated for each of these subsets. Subsets are labelled in the table by the 

model(s) projecting the species occurrence.  The proportion of pixels for which all models agree on the species 

occurrence (or absence) is indicated in the last column; and the numbers of points per subset of the data is 

given for all three species and all three climatic conditions (current and 2081-2100 for both scenarios).  
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Fagus sylvatica p(occurrence) 0.051 0.245 0.223 0.159 0.741 0.341 0.523 0.813  

Number of 
pixels per 
subset 

1981-2000 11205 3276 139 2244 1452 2913 262 7275 64.2% 

2081-2100, A1Fi 8431 1662 2795 705 4190 3033 2436 5514 48.5% 

2081-2100, B2 8817 2901 625 1399 4329 2313 1270 7112 55.4% 

Quercus robur p(occurrence) 0.069 0.676 0.459 0.349 0.850 0.660 0.136 0.829  

Number of 
pixels per 
subset 

1981-2000 8601 596 719 1515 1474 2681 235 12945 74.9% 

2081-2100, A1Fi 6095 412 3244 354 1814 2128 3322 11397 60.8% 

2081-2100, B2 4835 1152 2102 1119 1858 2414 1535 13751 64.6% 

Pinus sylvestris p(occurrence) 0.146 0.262 0.417 0.000 0.751 0.035 0.231 0.774  

Number of 
pixels per 
subset 

1981-2000 4489 294 2847 5 4590 114 648 15779 70.5% 

2081-2100, A1Fi 6456 3 11873 12 3620 0 386 6416 44.7% 

2081-2100, B2 5252 3 6270 26 4254 0 1322 11639 58.7% 
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