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ABSTRACT

Aim The effects of ongoing global change are causing increasing concern about
the ability of species or biomes to shift or adapt. Tremendous efforts have been
made to develop ever more sophisticated species distribution models to provide
forecasts for the future of biodiversity. All these models rely on species occurrence
data, either for calibration or validation. Here we evaluate (i) whether distribution
data diverge among widely used sources, for supposedly well-known taxa, and (ii)
to what extent these divergences affect species distribution models.

Location Europe (as an example).

Methods We compared the distribution maps of 21 of the most common Euro-
pean trees, according to four large-scale, putatively reliable sources of distribution
data. For each species, we compared the outputs of correlative species distribution
models built using occurrence data from each of these sources of data. We also
investigated how discrepancies in large-scale occurrence data affected the validation
scores of two process-based tree distribution models.

Results Maps of tree occurrence diverged in 8–74% of the forested area, depend-
ing on species. These discrepancies affected projections of niche models: for
example, 22–75% of the area projected as suitable by at least one model generated
using one source of data was not projected as such by all other models. For most
species, this proportion increased under scenarios of climate change, whatever the
model used. To a lesser extent, uncertainties on current species distributions also
affect the validation score of process-based distribution models.

Main conclusions Reliable, widely used sources of occurrence data strongly
diverge even for well-known taxa – the most common European trees. Scientists
and stakeholders should acknowledge this gap in knowledge, since accurate data are
a prerequisite to providing stakeholders with robust forecasts on biodiversity. Par-
ticipatory science programmes and remote sensing techniques are promising tools
for rapidly gathering such data.
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INTRODUCTION

Together with other components of global change, such as

habitat fragmentation and land-use change, climate change con-

tributes to the demographic decrease, the contraction and/or the

shift of the geographic ranges of many species (Pereira et al.,

2010). Species distribution models (SDMs) are widely used to

project the changes in species or biome distributions under

changing environments. For example, the expected changes in

the distribution of biodiversity (Morin et al., 2008; Thuiller

et al., 2011) and the fate of nature reserves (Araújo et al., 2011;

Hickler et al., 2012) under climate change have garnered much

attention. Models generally agree that the suitable habitats for

most species will shift generally, though not only, towards the

poles (VanDerWal et al., 2013), but the capacity of individual

species to colonize new favourable areas will depend partly
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on their competitive and dispersal abilities (Boulangeat et al.,

2012; Zhu et al., 2012).

SDMs can broadly be classified into two categories, although

a continuum exists between the two (Dormann et al., 2012):

correlative SDMs establish statistical relationships between envi-

ronmental variables and observed species occurrences and

process-based SDMs describe the empirical reaction norms of

physiological processes to environmental drivers to estimate

species performance and presence. Models of the latter class do

not normally use directly observed occurrences for calibration

(forward process-based models; but see Higgins et al., 2012) but

do use such data for evaluation. In most cases, models of both

types only inform about the suitability of a particular environ-

ment, regardless of extrinsic factors that may prevent a species

from actually colonizing a site, such as competitive exclusion or

dispersal limitation (Dormann et al., 2012). In addition, models

driven by distribution data (i.e. correlative SDMs) inform on

correlations between environmental variables and species distri-

butions, which may be causal but may also be contingent to the

past history of the species and its environment (e.g. Hortal et al.,

2012).

Projections of models of both types are affected by various

intrinsic and extrinsic factors. Among these, the incompleteness

of models (Dormann, 2007), the extent of environmental dif-

ferences between the novel and the calibration environments

(Veloz et al., 2012) and the uncertainties in scenarios of land use

and climate change (Buisson et al., 2010) clearly matter. Cor-

relative SDMs suffer from additional sampling bias of the occur-

rence (and absence) data used for calibration, such as sample

size (Stockwell & Peterson, 2002), spatial scale (Randin et al.,

2009), location error (Guisan et al., 2007), species detectability

(Reese et al., 2005), biases in sampling effort (Lobo, 2008) and

the relative extent of the modelled area actually occupied by the

species (Jiménez-Valverde et al., 2008). Finally, the validation of

any SDM has a deep reliance on the quality of the ‘reference’

presence and absence data.

If issues of data quality for the calibration of correlative SDMs

have been widely addressed in the literature, no study has so far

evaluated the impact of the potential discrepancy among several

data sources on the projections of SDMs. Divergences among

sources of occurrence data may be thought to affect primarily

species that are rare, inconspicuous or both. Here we demon-

strate dramatic differences in data obtained from different,

putatively reliable sources on the occurrence of widespread and

conspicuous species: the most common European forest trees.

We explore to what extent these discrepancies affect the outputs

of correlative (driven by distribution data) SDMs, and the vali-

dation of process-based SDMs.

MATERIAL AND METHODS

Sources of occurrence data

We used four sources of tree distribution data covering the

whole European continent: the Atlas Florae Europaeae (AFE;

Jalas & Suominen, 1964–2010), the map of the natural

vegetation of Europe (EuroVegMap; Bohn et al., 2004), the

EUFORGEN database (http://www.euforgen.org/distribution

_maps.html) and the Joint Research Centre distribution maps

(JRC; http://forest.jrc.ec.europa.eu/). In addition, punctual

occurrence data were obtained from forest inventory plots (6146

plots from the ICP level I dataset; http://www.icp-forests.org/).

These were used to evaluate the accuracy of the atlas-based data.

The JRC dataset provides densities of tree species within

European forests only, at 1 km resolution. This dataset is partly

based on the ICP forest plot inventory, which it matched per-

fectly. However, because the JRC dataset only covers forested

areas, it is expected to underpredict species occurrences in non-

forest areas (where trees can grow outside forests, or in small

forest patches).

Atlas Florae Europaeae is a project launched in 1965 and still

ongoing. It is based on the field work of botanists across Europe.

This atlas means to exhaustively cover the European flora, at a

coarse resolution (50 km × 50 km pixels). This source of data

was thus expected to overpredict species presence, especially in

contrasted areas (such as mountain ranges). As compared with

the ICP forest inventory data, AFE indeed showed a large

number of false positives (i.e. it overpredicted distributions of

many species; see the first column of the table in Appendix S1 in

the Supporting Information).

EuroVegMap is a project launched in 1975 and completed in

2004. Its aim was to draw a fine-scale map of the potential

vegetation of Europe. As such, the mapping project focused on

habitats rather than species. A number of habitats were defined,

each of which was characterized by the presence of some species.

Not all species present in a given habitat are present in all of its

patches. As such, we expected this map to overpredict the dis-

tribution of at least some species. Yet, surprisingly, the rate of

false positives (overpredicted occurrences, as compared with the

forest inventory data) was often less than for the other two

atlases (Appendix S1).

The EUFORGEN database was created by the European

Forest Genetic Resources Programme. Distribution maps are

based on both bibliographic work and expert knowledge. We did

not have any particular expectations as to the rates of over- or

underprediction of this source of data. For many species, this

large-scale dataset is the one most able to correctly predict

occurrences, as indicated by the ICP forest inventory (Appendix

S1), but this may be because ICP data were partly used to

compile this dataset (no information is available as to the

sources of this dataset).

Because they are based on national or international collabo-

rations of experts and aim at extensive coverage, such sources of

data are expected to suffer little sampling bias. They are thus

often used as input for correlative SDMs (e.g. Araújo et al., 2011;

Thuiller et al., 2011), and are also used to validate distribution

models (e.g. Hickler et al., 2012; Gritti et al., 2013).

Species distribution data

Distribution data were collected from these five sources of data

for 21 of the most common European forest tree species: Abies
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alba Mill. (silver fir), Acer campestre L and Acer pseudoplatanus

L. (field and sycamore maples), Alnus glutinosa (L.) Gaertn.

(black alder), Betula pendula Roth and Betula pubescens Ehrh.

(silver and white birches), Carpinus betulus L. (common horn-

beam), Castanea sativa Mill. (chestnut), Corylus avellana L.

(common hazel), Fagus sylvatica L. (European beech), Fraxinus

excelsior L. (common ash), Larix decidua Mill. (European larch),

Picea abies (L.) H. Karst. (European spruce), Pinus halepensis

Mill., Pinus nigra J.F.Arnold, Pinus pinaster Aiton and Pinus

sylvestris L. (Aleppo, black, maritime and Scots pines, respec-

tively), Populus tremula L. (quaking aspen), Quercus ilex L.,

Quercus pubescens Willd. and Quercus robur L. (holm, downy

and pedunculate oaks, respectively). Whenever a species was

split into subspecies, occurrences of all subspecies were merged

to yield the final occurrence datasets.

Data from AFE were not available for three species (Acer

campestre, Acer pseudoplatanus, Fraxinus excelsior); data from

EUFORGEN were not available for five species (Betula

pubescens, Carpinus betulus, Corylus avellana, Quercus ilex

and Quercus pubescens), and data from JRC were not avail-

able for three species (Acer campestre, Acer pseudoplatanus,

Corylus avellana). Each species was thus represented by two

(Acer campestre and Acer pseudoplatanus) to four (13 species)

maps.

Distribution data obtained from the five sources of data

were either upscaled or downscaled to the resolution of 10′
(see Appendix S2). AFE occurrence data (whether native or

alien) were downscaled to 10′ by attributing occurrences from

one 50-km AFE cell to all 10′ pixels overlapping this cell. This

necessarily leads to overestimations of species ranges (see

Appendix S3; also discussed in Rondinini et al., 2006; Pineda &

Lobo, 2012). The EUFORGEN dataset consists of continuous

areas and punctual occurrences: occurrences were attributed to

each pixel of the 10′ grid overlapping a continuous area, or

containing at least one punctual occurrence. The EuroVegMap

dataset is provided as a series of polygons corresponding to

potential vegetation types (including plantations) at a resolu-

tion of 2 km. Species appear as ‘present’ in all patches of the

types of habitats they are known to inhabit, hence over whole

polygons of habitats. For each species, we attributed ‘occur-

rence’ records to each of the 10′ pixels totally or partly over-

lapping one such unit. JRC data record species abundances

within forests, at 1-km resolution. JRC data were transformed

into presence–absence data by attributing an ‘occurrence’

record to each 10′ pixel overlapping at least one 1-km JRC

pixel with positive abundance. Out of the 28,766 10′ × 10′
pixels used in this study, 10,296 contained forest patches and

thus information from the JRC dataset. The ICP dataset pro-

vides punctual presence/absence data in 6146 plots; presences

or absences were attributed to the 10′ pixel overlaying the loca-

tion of the initial record. Whenever several ICP plots were

included in the same pixel, presence was attributed to the

10′ × 10′ pixel as soon as the species was present in at least one

of the ICP plots. This resulted in 5441 10′ × 10′ pixels contain-

ing ICP information. The upscaling and downscaling pro-

cedure for data from all sources is illustrated in Appendix S2.

Climate data

Five climatic variables were used to build correlative distribu-

tion models. These variables are related to temperature and

precipitation, and their seasonality. They thus reflect constraints

on energy and water uptake, and on temperature and water

stress, which are thought to play an important role in limiting

species distributions. These variables were: minimal mean tem-

perature of the coldest month (°C); mean yearly growing degree

days above 5 °C, a rough indicator of potential plant energy

uptake (°C); mean total yearly amount of precipitation (mm);

seasonality of precipitation, as expressed by the coefficient of

variation of precipitation across the four trimesters (dimension-

less); and a dimensionless moisture index, expressed as the ratio

of mean actual to potential evapotranspiration over the growing

season (temperatures above 5 °C).

Current (1980–2000) climate variables were computed from

the CRU TS 1.2 dataset and forecasts (2080–2100) were derived

from the CRU TYN SC 1.0 dataset. To isolate the impact of

data-driven uncertainty on SDMs, we deliberately used a unique

general circulation model (HadCM3). We considered two SRES

emissions scenarios: A1Fi and B2. Scenario A1Fi implies more

emissions (and thus higher concentrations of atmospheric CO2)

than scenario B2.

Correlative distribution modelling

Correlative habitat suitability models were generated for each

species and each available source of data, with the current

climate dataset. Because some of the sources of data used here

were atlases mapping regions of occurrence, but not providing

punctual occurrences, models relying on the density of pres-

ences only (such as MaxEnt or Poisson regression models)

would necessarily have been imprecise. For this reason, we used

presence–absence models, implemented in the Biomod library

in R (Thuiller et al., 2009). For each species and source of data,

five algorithms were run: artificial neural networks (ANNs),

classification tree analysis (CTA), flexible discriminant analysis

(FDA), generalized additive models (GAMs) and generalized

linear models (GLM). MaxEnt was not used for the reason given

above; in addition, using it would have been somewhat equiva-

lent to using a GLM (Renner & Warton, 2013).

These algorithms require occurrences and absences to be

specified. For each species and source of occurrence data, we

considered that the species may be absent wherever it was not

observed, and generated pseudo-absences in locations where the

species was not deemed as ‘present’. This approach has been

proved fruitful for virtual species (Wisz & Guisan, 2009;

Barbet-Massin et al., 2012). We only generated as many pseudo-

absences as there were ‘presence’ records (Barbet-Massin et al.,

2012), and hence did not assume that all non-presences were

true absences. This procedure was repeated three times for each

species and source of data. Models were then calibrated using a

random set of 70% of the available data (presences and pseudo-

absences), and evaluated against the remaining 30% of the

dataset, using the area under the receiver operating curve (AUC)
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criterion (Swets, 1988). The AUC varies from 0 to 1, with 0.5

indicating a null model and 1 a perfect model. This criterion

merely provides an evaluation of the model’s discriminatory

power (Lobo et al., 2008). This procedure was repeated three

times, to provide three-fold internal cross-validation. Cross-

validation scores were generally high, regardless of the choice of

pseudo-absences and the data splitting.

Habitat favourability is monotonously related to the continu-

ous output of each algorithm, hereafter referred to ‘habitat suit-

ability’ (Real et al., 2006, equation 7). For each combination of

species, source of data and model (algorithm), we determined a

threshold above which the model was considered to project the

species as ‘present’. We chose this threshold so as to maximize the

sum of sensitivity and specificity (Jiménez-Valverde & Lobo,

2007). We then weighted binary projections of the five models

according to each model’s performance and averaged them to

yield an ‘ensemble model’. We finally applied a threshold to the

probability of occurrence generated by the ensemble model,

again maximizing the sum of sensitivity and specificity, to

compute statistics such as range size. Because we had access to

neither true absence data nor to the geographic variation in

sampling effort, at this stage we had to assume that non-

presence points were absences.

Once calibrated on current climatic conditions, models were

extrapolated to forecast conditions. For each species, source of

data and scenario, we defined the area of the modelled species

range as the cumulated surface (in km2) of all pixels for which

the ensemble model produced outputs were above that thresh-

old. Range change under scenarios was computed as the ratio of

forecast to current modelled area. We considered two extreme

scenarios: no dispersal and full dispersal (Appendix S3).

The (exact) variance between projections was computed

using the continuous outputs of the ensemble models generated

using different data sources. When three or four data sources

were available, variance could not exceed 1/3; when there were

only two data sources (both Acer species), variance could reach

1/2. Inter-projection variance was summed over species after

dividing variances for Acer species by 3/2, in order to obtain

equal weights for all species.

Process-based distribution modelling

For three species (Scots pine, pedunculate oak and European

beech), we ran a process-based distribution model (PHENOFIT;

Chuine & Beaubien, 2001; Morin & Chuine, 2005), and a hybrid

distribution model (LPJ; Smith et al., 2001; Sitch et al., 2003).

Details about the models and their parameterization are pro-

vided in Gritti et al. (2013).

These models are not calibrated using distribution data;

however, observed distributions are usually used to validate

them. The quality of the projections obtained with these

models was assessed using the AUC (Swets, 1988) criterion,

using each source of data as a reference. For each of the

process-based models, species, source of occurrence data and

scenario, we determined the suitable area. ‘Suitable’ pixels cor-

responded to those where the model output was superior to a

threshold maximizing the sum of sensitivity and specificity,

with respect to the source of occurrence data (Jiménez-

Valverde & Lobo, 2007).

RESULTS

Discrepancies among sources of occurrence data

We found surprisingly large discrepancies among the four

sources of occurrence data (Appendices S4 & S5). Depending on

the species, occurrence maps diverged for 8–74% (median 23%)

of the forested area (only forests were exhaustively covered by all

four data sources).

These differences translated into discrepancies in spatial pat-

terns of species richness (Fig. 1) and affected most species across

the whole continent (Appendices S4 & S5). Among the three

sources of occurrence data covering the whole of Europe (AFE,

Figure 1 Spatial distribution of species richness (species count) for 13 common European trees, according to four sources of data
(Lambert azimuthal equal area projection). Darker shades indicate higher richness. The 13 species included here are those of the 21
most common European species for which all four maps were available. Note that the JRC dataset (d) only covers forested areas
(non-forest areas appear in white). AFE, Atlas Florae Europaeae (Jalas & Suominen, 1964–2010; Lahti & Lampinen, 1999;
http://www.luomus.fi/english/botany/afe/index.htm); EUFORGEN, Euforgen dataset (http://www.euforgen.org/distribution_maps.html);
EuroVegMap, map of the potential vegetation of Europe (Bohn et al., 2004); JRC, Joint Research Centre dataset (http://forest.jrc.ec
.europa.eu/).
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EuroVegMap and EUFORGEN), the one with the coarsest reso-

lution (AFE) consistently indicated wider distributions than the

other two (Appendices S1 & S3); however, none of them was

able to consistently better predict punctual forest inventory data

(ICP dataset; Appendix S1).

Impact on projections of correlative SDMs

Whatever the species, source of distribution data or modelling

algorithm, modelled distributions of current habitat suitability

closely matched the source of distribution data, resulting in

large discrepancies in simulated current habitat suitability. As an

example, Fig. 2 shows how outputs of the BIOMOD model are

affected by the source of data for the emblematic European

beech (Fagus sylvatica L.; see Appendix S6 for all 21 species).

When extrapolated to climatic scenarios, models generated

using different sources of occurrence data for a given species

generally agreed in the direction of range shift, but showed large

quantitative variance. For example, consistent with previous

studies (Kramer et al., 2010; Cheaib et al., 2012; Meier et al.,

2012), all models generated using BIOMOD inferred a north-

easterly shift of the distribution of European beech by 2080–

2100 under the A1Fi scenario; yet simulated suitable future

habitats may cover either a larger or smaller range than the

current range (Fig. 2). The same applied to 6 of the 20 other

species under scenario A1Fi (and eight under scenario B2;

Appendices S3 & S6). Thus, discrepancies among maps gener-

ated for current conditions were magnified under forecasts.

When using BIOMOD for the current period, depending on

species, 22–75% (median 44%) of the area projected as ‘suitable’

by at least one model based on one source of occurrence data

was not projected as such by the other models. This proportion

increased for 19 (respectively 12) of the 21 species by 2080–2100

under scenario A1Fi (respectively B2; Appendix S7). Maps of

Figure 2 Consequences of discrepancies
in sources of occurrence data on
projections of correlative distribution
models: the case of European beech,
Fagus sylvatica (Lambert azimuthal
equal area projection). Differences in
occurrence data from four sources (left
column, red pixels) translate into
differences in current (middle column)
and forecast (right column) simulated
habitat suitability. AUC (the area under
the receiver operating curve) indicates the
discriminative power of each model (as
compared with the corresponding
occurrence map); values above 0.9 are
considered as very good agreement. RC,
range change, i.e. the ratio of future to
current simulated suitable areas
(assuming full dispersal).
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suitable habitats generated for the same species, but from differ-

ent sources of data, showed overall low pairwise correlation

under current conditions, and these correlations were even

lower under forecast conditions (Fig. 3; e.g. the proportion of

pairwise correlations r lower than 0.5 was 23% for current con-

ditions and 39% for forecasts).

Among algorithms, GAMs and GLMs were the least sensitive

to discrepancies among sources of occurrence data (Fig. 4).

Impact on the validation of projections of
process-based SDMs

To a lesser extent, differences between sources of occurrence

data also affected post-hoc quality assessments of process-based

distribution models. The value of the AUC computed for three

species and with two process-based models varied by 0.05–0.15

units depending on the data source chosen as a reference

(Appendix S8), thus affecting judgment on the quality of these

models. When outputs of process-based models were trans-

formed into binary presence–absence projections, using a

threshold maximizing the sum of sensitivity and specificity with

respect to one reference source of data, the area projected as

‘present’ varied on average by 26% for the current period

(Appendix S9).

DISCUSSION

SDMs need to be calibrated and/or validated against observed

distribution data. Our results show that existing data in widely

used sources show large discrepancies, even for well-known

species in well-sampled areas such as forest trees in Europe.

These discrepancies affect the projections of correlative distri-

bution models (whether making use of presence-only or of

presence/pseudo-absence data), especially under forecast cli-

matic conditions, and also, to a lesser extent, the post-hoc vali-

dation score of process-based distribution models.

Why do sources of occurrence data differ?

Differences among sources of occurrence data may be attributed

to various causes. First, the aims of the different mapping proj-

ects varied, thus the criteria used for mapping differed between

projects. In particular, some datasets were assembled by bota-

nists (AFE, EuroVegMap), others by foresters (EUFORGEN,

ICP) and still others by foresters and modellers (JRC). Differ-

ences in interest may entail differences in mapping, and some

investigators may consider the species as present only if it

reaches some density, or if it is able to naturally regenerate.

Second, all these global sources of data were gathered by many

investigators located in different regions, and large-scale distri-

bution maps are likely to suffer from regional bias due the sub-

jectivity of local investigators. Finally, not all maps are provided

with the same spatial resolution. All sources of data used here

focus on presences, not on absences, hence absence data are

often likely to be false absences. Datasets with a coarser grain

were thus expected to overpredict presences – to some extent,

this was true of the Atlas Florae Europaeae dataset.

Figure 3 Discrepancies between model projections due to the
source of occurrence data used for calibration increase under
climate change scenarios. Species-wise correlations (r) between
pairs of projected habitat suitability maps for 2080–2100 (closed
symbols, A1Fi scenario; open symbols, B2 scenario) are plotted
against the correlations between pairs of current habitat suitability
maps obtained using different data sources as model input. On
each panel, each point represents the correlation between two
source maps, for a given species; and the dashed line is the 1 : 1
curve.

Figure 4 Distribution of the correlations among maps of habitat
suitability generated for the period 1981–2000 by the five
algorithms implemented in BIOMOD, for the same species but
from different sources of occurrence data. Each dot represents the
correlation between two projections made for a given species, but
from different maps.
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Ideally, SDMs would need to be informed either by densities

of observations (for models such as MaxEnt or Poisson regres-

sion models) or by absence data. True absence data are difficult

to collect, even for easily detectable and immobile species such

as trees, because they require a high sampling effort. Thus, large-

scale sources of distribution data such as those used here only

inform on occurrences, not on absences. Absence data are uncer-

tain (Lobo et al., 2010; Peterson et al., 2011; Rocchini et al.,

2011). Some uncertainties pertain to the species’ detectability,

which in our case is supposedly large – we only selected

common tree species on a continent long inhabited and heavily

managed by humans. Some uncertainties pertain to grain size,

which is often coarse in atlases (Rocchini et al., 2011). Others are

related to sampling biases or errors in location or in species

identification. For example, point occurrence data (such as those

provided by herbarium samples or the Global Biodiversity

Information Facility) may be imprecise (Guisan et al., 2007) or

may have different densities resulting from differences in data

collection or publishing effort (Kadmon et al., 2004; Yesson

et al., 2007; Peterson et al., 2011). Finally, large-scale atlases of

distributions may be more precise or more exhaustive for some

regions (and/or for some species) than for others. In well-

sampled areas, absences may thus reflect the distribution of true

absences, while in less-sampled areas, absences are more likely to

be false absences. While it may be fruitful to inform a model by

the sampling effort (Lobo, 2008), this information is not always

available – and was not available in the present study. To be fully

compatible with distribution modelling, large-scale maps of

species distribution should thus be associated with maps of

sampling effort.

To complicate matters, SDMs should only be calibrated using

occurrences of viable populations. This is one of the reasons why

GBIF data were not included in our analysis. GBIF records mix

naturally regenerating populations with populations living in

artificial areas, where they may never regenerate – or regenerate

only owing to being watered or fertilized. A second important

reason for excluding GBIF data from our analyses is that GBIF

data also suffer from regional bias in sampling design or record-

ing intensity (Yesson et al., 2007). For example, for the species

considered here, the UK, Netherlands and central/eastern parts

of France were heavily sampled, while few occurrences of any

tree species were recorded from Poland; and occurrence data for

Spain were placed on a grid much coarser than the 10′ resolution

used in this study. In their present state, GBIF data may be used

to answer some questions for some taxa (e.g. Randin et al.,

2013), but this needs careful pre-filtering of the data (Beck et al.,

2013; Randin et al., 2013).

Combining sources of occurrence data

Because none of the sources of data could arguably be consid-

ered as consistently better than the others in depicting observed

occurrences (Appendix S1), none of the forecasts presented in

Fig. 2 (nor in Appendix S6) can be deemed to be most plausible.

Among the algorithms used, GAMs and GLMs seem to be the

less sensitive to variations in source data. GLMs were also found

to be relatively robust (as compared with other modelling

algorithms) to small locational errors (Guisan et al. (2007).

However, our study and that of Guisan et al. rely on a single

climatic dataset; this result thus might not be general.

Combining the information conveyed by all data sources to

obtain ‘ensemble datasets’ of distribution data that would

approach the true empirical distribution of the species may

prove tricky. For example, one could consider the species to be

present only in sites where all data sources indicate presence; but

this would lead to large numbers of false negatives (sites where

the species would be falsely inferred as absent). The best com-

bination of occurrence maps may be a map of the probability

density of the given species being present. In our case, there is a

100% probability that species are present where the forest inven-

tory dataset (ICP forests) indicates it to be. However, absences in

this dataset may be false absences. In all pixels where the ICP

forest dataset indicates no presence (or provides no data), the

probability of the species being present may be defined as the

probability of each of the other sources of data indicating it is

present.

These kinds of ‘ensemble data’ could be used in SDMs.

Indeed, these models could be modified to take discrepancies

among data sources into account, for example through model-

ling habitat suitability in N different data sources as the result of

a binomial trial with N draws. Whenever (or wherever) sources

are judged as differing in quality, their contributions to each

pixel’s ‘occurrence score’ could be weighted by their trustwor-

thiness. SDMs can also help target which regions most need

sampling effort by looking at the geographic distribution of the

discrepancies between models calibrated using different sources

of data. Note that these may differ from the regions where

sources of data diverge (Fig. 5).

Other possible solutions

The issue of environmental data quality has become more rel-

evant over the last few years with the emergence of environmen-

tal Open Data (Reichman et al., 2011). Discrepancies among

data sources not only affect species occurrence data: large dif-

ferences among sources were recently noted for several traits of

butterfly species (Fitzsimmons, 2013). These and our results call

into question the reliability of research relying on a single source

of data; and advocate for an urgent need to develop high-quality

databases gathering occurrences (and trait values) of currently

existing, naturally regenerating biodiversity. Ecologists have

striven for the last 15 years to develop an impressive array of

always more sophisticated SDMs. Ironically, they are now in the

awkward position where those models cannot provide accurate

forecast of changes in species distribution simply because they

do not have accurate species distribution data to calibrate and

validate them.

The most straightforward way of acquiring such data in

a reasonable timeframe may involve participatory science

programmes which are drawing increasing attention from

scientists, especially in the field of environmental sciences

(Dickinson et al., 2012). High-quality databases of species
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occurrence and reproductive state could be easily obtained

through smartphone applications, ensuring easy geolocation,

associated with pictures enabling cross-validation of a species’

identification or reproductive status. Such programmes have

now proven their authority in terms of data collection and sci-

entific input (Devictor et al., 2010; Dickinson et al., 2010;

Hochachka et al., 2012). Citizen science programmes per se

can be set up for well-known groups of species, for which

visual species recognition software already exists (e.g. http://

www.leafsnap.com for trees of eastern North America). Never-

theless, citizen science programmes also have the potential to

involve self-educated naturalist experts able to identify rarer or

difficult taxa.

These efforts could be combined with emerging remote

sensing techniques, such as the use of small transmitters able to

record migrations with a precision down to a few metres of

animals as small as butterflies (e.g. the ICARUS initiative; http://

icarusinitiative.org), the use of airborne LiDAR (Korpela et al.,

2010) or hyperspectral sensors (Kamaruzaman & Kasawani,

2009) to identify tree species. Data collected by these emerging

monitoring techniques should be made publicly available, using

common standards of data quality and interoperability (Scholes

et al., 2008).

Even with such powerful data collection systems, acquiring

accurate species distribution data will take time. In the mean-

time, SDMs could be modified to take discrepancies among data

sources into account (see above), and to deal with ‘ensemble

datasets’ of occurrence data. In the last decade, tremendous

efforts have been made to develop ever more sophisticated

SDMs. The evaluation of these models, either correlative or

process-based, relies heavily on species occurrence data. Accu-

rate occurrence data are an essential prerequisite to achieve the

robust forecasting of species distributions and larger-scale bio-

diversity patterns that stakeholders and policy makers expect,

and together with environmental scientists they should urgently

realize that such data still need to be collected.

ACKNOWLEDGEMENTS

This research was funded by ANR EVORANGE (ANR-09-

PEXT-01102) and SCION (ANR-09-PEXT-01105). A.D. was

supported by the ANR EVORANGE. The authors thank F.

Massol and D. McKey for advice, E. S. Gritti for providing pro-

jections by the model LPJ, and A. Hampe, C. Randin and an

anonymous referee for their useful comments that greatly

improved the first version of this manuscript.

REFERENCES

Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. &

Thuiller, W. (2011) Climate change threatens European con-

servation areas. Ecology Letters, 14, 484–492.

Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012)

Selecting pseudo-absences for species distribution models:

how, where and how many? Methods in Ecology and Evolution,

3, 327–338.

Beck, J., Ballesteros-Mejia, L., Nagel, P. & Kitching, I.J. (2013)

Online solutions and the ‘Wallacean shortfall’: what does

GBIF contribute to our knowledge of species’ ranges? Diver-

sity and Distributions, 19, 1043–1050.

Bohn, U., Gollub, G., Hettwer, C., Neuhäuslová, Z., Raus, T.,

Schlüter, H. & Gis, H.W. (2004) Karte der natürlichen

Vegetation Europas/Map of the Natural Vegetation of

Europe. Interaktive/Interactive CD-ROM – Erläuterungstext,

Legende, Karten/Explanatory Text, Legend, Maps. Landwirt-

schaftsverlag, Münster.

Boulangeat, I., Gravel, D. & Thuiller, W. (2012) Accounting for

dispersal and biotic interactions to disentangle the drivers of

species distributions and their abundances. Ecology Letters, 15,

584–593.

Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G.

(2010) Uncertainty in ensemble forecasting of species distri-

bution. Global Change Biology, 16, 1145–1157.

Figure 5 (a) Discrepancies among sources of occurrence data
and (b) resulting variance in modelled species distributions
(Lambert azimuthal equal area projection). (a) For each pixel the
numbers of species (among the 21) for which atlas data diverge.
(b) The distribution of variance in predicted current distribution
among models generated with BIOMOD, for the same species but
from different data sources, summed over all 21 species. Regions
of highest among-model variance (b) can differ from those of
higher variance in occurrence data (a).

A. Duputié et al.

Global Ecology and Biogeography, 23, 457–467, © 2013 John Wiley & Sons Ltd464



Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrêne, E.,

François, C., Gritti, E.S., Legay, M., Pagé, C., Thuiller, W.,

Viovy, N. & Leadley, P. (2012) Climate change impacts on tree

ranges: model intercomparison facilitates understanding and

quantification of uncertainty. Ecology Letters, 15, 533–544.

Chuine, I. & Beaubien, E.G. (2001) Phenology is a major deter-

minant of tree species range. Ecology Letters, 4, 500–510.

Devictor, V., Whittaker, R.J. & Beltrame, C. (2010) Beyond scar-

city: citizen science programmes as useful tools for conserva-

tion biogeography. Diversity and Distributions, 16, 354–362.

Dickinson, J.L., Zuckerberg, B. & Bonter, D.N. (2010) Citizen

science as an ecological research tool: challenges and benefits.

Annual Review of Ecology, Evolution and Systematics, 41, 149–

172.

Dickinson, J.L., Shirk, J., Bonter, D., Bonney, R., Crain, R.L.,

Martin, J., Phillips, T. & Purcell, K. (2012) The current state of

citizen science as a tool for ecological research and public

engagement. Frontiers in Ecology and the Environment, 10,

291–297.

Dormann, C.F. (2007) Promising the future? Global change pro-

jections of species distributions. Basic and Applied Ecology, 8,

387–397.

Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Hartig, F.,

Kearney, M., Morin, X., Römermann, C., Schröder, B. &

Singer, A. (2012) Correlation and process in species distribu-

tion models: bridging a dichotomy. Journal of Biogeography,

39, 2119–2131.

Fitzsimmons, J.M. (2013) How consistent are trait data between

sources? A quantitative assessment. Oikos, 122, 1350–1356.

Gritti, E.S., Duputié, A., Massol, F. & Chuine, I. (2013) Estimat-

ing consensus and associated uncertainty between inherently

different species distribution models. Methods in Ecology and

Evolution, 4, 442–452.

Guisan, A., Zimmermann, N.E., Elith, J., Graham, C.H., Phillips,

S. & Peterson, A.T. (2007) What matters for predicting the

occurrences of trees: techniques, data, or species’ characteris-

tics? Ecological Monographs, 77, 615–630.

Hickler, T., Vohland, K., Feehan, J., Miller, P., Smith, B., Costa, L.,

Giesecke, T., Fronzek, S., Carter, T.R., Cramer, W., Kühn, I. &

Sykes, M.T. (2012) Projecting the future distribution of Euro-

pean potential natural vegetation zones with a generalized,

tree species-based dynamic vegetation model. Global Ecology

and Biogeography, 21, 50–63.

Higgins, S.I., O’Hara, R.B., Bykova, O., Cramer, M.D., Chuine, I.,

Gerstner, E.-M., Hickler, T., Morin, X., Kearney, M.R.,

Midgley, G.F. & Scheiter, S. (2012) A physiological analogy of

the niche for projecting the potential distribution of plants.

Journal of Biogeography, 39, 2132–2145.

Hochachka, W.M., Fink, D., Hutchinson, R.A., Sheldon, D.,

Wong, W.-K. & Kelling, S. (2012) Data-intensive science

applied to broad-scale citizen science. Trends in Ecology and

Evolution, 27, 130–137.

Hortal, J., Lobo, J. & Jiménez-Valverde, A. (2012) Basic questions

in biogeography and the (lack of) simplicity of species distri-

butions: putting species distribution models in the right place.

Natureza & Conservação, 10, 108–118.

Jalas, J. & Suominen, J. (1964–2010) Atlas florae Europaeae.

Committee for Mapping the Flora of Europe and Societas

Biologica Fennica Vanamo, Helsinki, Finland.

Jiménez-Valverde, A. & Lobo, J.M. (2007) Threshold criteria for

conversion of probability of species presence to either–or

presence–absence. Acta Oecologica, 31, 361–369.

Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2008) Not as

good as they seem: the importance of concepts in species

distribution modelling. Diversity and Distributions, 14, 885–

890.

Kadmon, R., Farber, O. & Danin, A. (2004) Effect of roadside

bias on the accuracy of predictive maps produced by

bioclimatic models. Ecological Applications, 14, 401–413.

Kamaruzaman, J. & Kasawani, I. (2009) Hyperspectral remote

sensing for tropical rain forest. American Journal of Applied

Sciences, 6, 2001–2005.

Korpela, I., Ørka, H.O., Maltamo, M., Tokola, T. & Hyyppä, J.

(2010) Tree species classification using airborne LiDAR –

effects of stand and tree parameters, downsizing of training

set, intensity normalization, and sensor type. Silva Fennica,

44, 319–339.

Kramer, K., Degen, B., Buschbom, J., Hickler, T., Thuiller, W.,

Sykes, M.T. & de Winter, W. (2010) Modelling exploration of

the future of European beech (Fagus sylvatica L.) under

climate change – range, abundance, genetic diversity and

adaptive response. Forest Ecology and Management, 259, 2213–

2222.

Lahti, T. & Lampinen, R. (1999) From dot maps to bitmaps:

Atlas Florae Europaeae goes digital. Acta Botanica Fennica, 162,

5–9.

Lobo, J. (2008) More complex distribution models or more

representative data? Biodiversity Informatics, 82, 14–19.

Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a mis-

leading measure of the performance of predictive distribution

models. Global Ecology and Biogeography, 17, 145–151.

Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010) The uncer-

tain nature of absences and their importance in species dis-

tribution modelling. Ecography, 33, 103–114.

Meier, E.S., Lischke, H., Schmatz, D.R. & Zimmermann, N.E.

(2012) Climate, competition and connectivity affect future

migration and ranges of European trees. Global Ecology and

Biogeography, 21, 164–178.

Morin, X. & Chuine, I. (2005) Sensitivity analysis of the tree

distribution model Phenofit to climatic input characteristics:

implications for climate impact assessment. Global Change

Biology, 11, 1493–1503.

Morin, X., Viner, D. & Chuine, I. (2008) Tree species range shifts

at a continental scale: new predictive insights from a process-

based model. Journal of Ecology, 96, 784–794.

Pereira, H.M., Leadley, P.W., Proença, V. et al. (2010) Scenarios

for global biodiversity in the 21st century. Science, 330, 1496–

1501.

Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P.,

Martinez-Meyer, E., Nakamura, M. & Araújo, M. (2011) Eco-

logical niches and geographic distributions. Princeton Univer-

sity Press, Princeton, NJ.

Why we need better species distribution data

Global Ecology and Biogeography, 23, 457–467, © 2013 John Wiley & Sons Ltd 465



Pineda, E. & Lobo, J.M. (2012) The performance of range maps

and species distribution models representing the geographic

variation of species richness at different resolutions. Global

Ecology and Biogeography, 21, 935–944.

Randin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann,

N.E., Pearman, P.B., Vittoz, P., Thuiller, W. & Guisan, A.

(2009) Climate change and plant distribution: local models

predict high-elevation persistence. Global Change Biology, 15,

1557–1569.

Randin, C.F., Paulsen, J., Vitasse, Y., Kollas, C., Wohlgemuth, T.,

Zimmermann, N.E. & Körner, C. (2013) Do the elevational

limits of deciduous tree species match their thermal latitudi-

nal limits? Global Ecology and Biogeography, 22, 913–923.

Real, R., Barbosa, A.M. & Vargas, J.M. (2006) Obtaining envi-

ronmental favourability functions from logistic regression.

Environmental and Ecological Statistics, 13, 237–245.

Reese, G.C., Wilson, K.R., Hoeting, J.A. & Flather, C.H. (2005)

Factors affecting species distribution predictions: a simulation

modeling experiment. Ecological Applications, 15, 554–564.

Reichman, O.J., Jones, M.B. & Schildhauer, M.P. (2011) Chal-

lenges and opportunities of open data in ecology. Science, 331,

703–705.

Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT

and Poisson point process models for species distribution

modeling in ecology. Biometrics, 69, 274–281.

Rocchini, D., Hortal, J., Lengyel, S., Lobo, J.M.,

Jiménez-Valverde, A., Ricotta, C., Bacaro, G. & Chiarucci, A.

(2011) Accounting for uncertainty when mapping species dis-

tributions: the need for maps of ignorance. Progress in Physical

Geography, 35, 211–226.

Rondinini, C., Wilson, K.A., Boitani, L., Grantham, H. &

Possingham, H.P. (2006) Tradeoffs of different types of

species occurrence data for use in systematic conservation

planning. Ecology Letters, 9, 1136–1145.

Scholes, R.J., Mace, G.M., Turner, W., Geller, G.N., Jurgens, N.,

Larigauderie, A., Muchoney, D., Walther, B.A. & Mooney,

H.A. (2008) Toward a global biodiversity observing system.

Science, 321, 1044–1045.

Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A.,

Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T.,

Thonicke, K. & Venevsky, S. (2003) Evaluation of ecosystem

dynamics, plant geography and terrestrial carbon cycling in

the LPJ dynamic global vegetation model. Global Change

Biology, 9, 161–185.

Smith, B., Prentice, I.C. & Sykes, M.T. (2001) Representation of

vegetation dynamics in the modelling of terrestrial ecosys-

tems: comparing two contrasting approaches within Euro-

pean climate space. Global Ecology and Biogeography, 10, 621–

637.

Stockwell, D.R.B. & Peterson, A.T. (2002) Effects of sample size

on accuracy of species distribution models. Ecological Model-

ling, 148, 1–13.

Swets, J. (1988) Measuring the accuracy of diagnostic systems.

Science, 240, 1285–1293.

Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009)

BIOMOD – a platform for ensemble forecasting of species

distributions. Ecography, 32, 369–373.

Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade,

B. & Araujo, M.B. (2011) Consequences of climate change on

the tree of life in Europe. Nature, 470, 531–534.

VanDerWal, J., Murphy, H.T., Kutt, A.S., Perkins, G.C., Bateman,

B.L., Perry, J.J. & Reside, A.E. (2013) Focus on poleward shifts

in species’ distribution underestimates the fingerprint of

climate change. Nature Climate Change, 3, 239–243.

Veloz, S.D., Williams, J.W., Blois, J.L., He, F., Otto-Bliesner, B. &

Liu, Z. (2012) No-analog climates and shifting realized niches

during the late Quaternary: implications for 21st-century

predictions by species distribution models. Global Change

Biology, 18, 1698–1713.

Wisz, M.S. & Guisan, A. (2009) Do pseudo-absence selection

strategies influence species distribution models and their pre-

dictions? An information-theoretic approach based on simu-

lated data. BMC Ecology, 9, 8.

Yesson, C., Brewer, P.W., Sutton, T., Caithness, N., Pahwa, J.S.,

Burgess, M., Gray, W.A., White, R.J., Jones, A.C., Bisby, F.A. &

Culham, A. (2007) How global is the global biodiversity infor-

mation facility? PLoS ONE, 2, e1124.

Zhu, K., Woodall, C.W. & Clark, J.S. (2012) Failure to migrate:

lack of tree range expansion in response to climate change.

Global Change Biology, 18, 1042–1052.

SUPPORTING INFORMATION

Additional supporting information may be found in the online

version of this article at the publisher’s web-site.

Appendix S1 Rates of false positives and false negatives, and

overall matches of atlas-derived occurrences, as compared to

forest inventory data (ICP dataset).

Appendix S2 Upscaling and downscaling procedure for each of

the five sources of distribution data.

Appendix S3 Areas of occurrence of the 21 species according to

the available sources of data, and modelled areas for the current

period and under scenarios, for models built using occurrence

data from each data source.

Appendix S4 Maps showing the number of databases indicating

each of the 21 species’ occurrences across Europe.

Appendix S5 Maps showing discrepancies between the three

atlases.

Appendix S6 Maps showing observed occurrences, modelled

current and forecast probabilities of occurrence for the 21

species.

Appendix S7 Proportion of area where models disagree, within

the area predicted as suitable by at least one model.

Appendix S8 Post-hoc validation score of two process-based

models, using different sources of occurrence as reference.

Appendix S9 ‘Suitable’ area of three European species, as proj-

ected by two process-based models as a function of the data

source used to define a presence/absence threshold.

A. Duputié et al.

Global Ecology and Biogeography, 23, 457–467, © 2013 John Wiley & Sons Ltd466



BIOSKETCHES

Anne Duputié is an evolutionary ecologist interested

in niche evolution, and especially in incorporating

microevolutionary processes into process-based SDMs.

Niklaus E. Zimmermann is an ecologist interested in

macroecology, ecological theory and niche evolution.

Isabelle Chuine is an ecologist interested in modelling

plant niches using traits, and especially phenological

traits.

Author contributions: A.D., N.E.Z. and I.C. designed

the study. N.E.Z. and I.C. provided data. A.D.

performed the analyses and wrote the first version of

the manuscript, I.C. and N.E.Z. improved the

subsequent versions of the manuscript.

Editor: Arndt Hampe

Why we need better species distribution data

Global Ecology and Biogeography, 23, 457–467, © 2013 John Wiley & Sons Ltd 467


