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Abstract
Species may be able to respond to changing environments by a combination of adaptation and migration. We

study how adaptation affects range shifts when it involves multiple quantitative traits evolving in response to

local selection pressures and gene flow. All traits develop clines shifting in space, some of which may be in a

direction opposite to univariate predictions, and the species tracks its environmental optimum with a constant

lag. We provide analytical expressions for the local density and average trait values. A species can sustain faster

environmental shifts, develop a wider range and greater local adaptation when spatial environmental variation is

low (generating low migration load) and multitrait adaptive potential is high. These conditions are favoured

when nonlinear (stabilising) selection is weak in the phenotypic direction of the change in optimum, and genetic

variation is high in the phenotypic direction of the selection gradient.
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INTRODUCTION

Ongoing global change is strongly affecting biodiversity, with numerous

species currently becoming extinct, shifting in range, and ⁄ or changing

their phenotype. Global species extinctions linked to climate change

have already been observed (e.g. Parmesan 2006), and many more are

expected in the coming decades, even under the overoptimistic scenario

of unlimited dispersal (Thomas et al. 2004). Extinction can be avoided or

delayed either through distributional range displacement or through trait

evolution. Polewards shifts in distributional ranges are observed in many

species, due to local population extinctions at low latitudes and ⁄ or

colonisation at high latitudes (reviewed in Parmesan 2006; Hill et al.

2011). Plastic responses (e.g. Parmesan & Yohe 2003; Chevin & Lande

2010; Chuine 2010) and ⁄ or genetic responses (e.g. Bradshaw &

Holzapfel 2001; Umina et al. 2005) could enable species to sustain

environmental changes although not necessarily displacing their ranges.

There is substantial interest in identifying those factors preventing

species from adapting to changing environments, and thus setting range

limits (e.g. Gaston 2003; Sexton et al. 2009). An important determinant

of species� ranges may in particular be the potential for genetic

adaptation of key traits to environments that change in space and time

(Hoffmann & Sgrò 2011).

Both genetic constraints (e.g. genetic correlations between selected

traits) and gene flow from maladapted populations have been offered

as forces potentially constraining species adaptation. A recent model

explored how these forces interact and contribute to maladaptation in

spatially heterogeneous landscapes (Guillaume 2011). Yet, no model

has investigated these joint contributions in the context of an

environment that changes both in time and space, as is the case for

climate change over spatial gradients, which we herein set out to

investigate.

Early models set in homogeneous environments focused on how

demographic and genetic constraints influenced the maximal sustain-

able rate of change (Lynch & Lande 1993; Bürger & Lynch 1995).

These models were subsequently generalised, to account for the

multivariate nature of selection (Gomulkiewicz & Houle 2009).

Indeed, if genetic variation seems to be present in virtually all traits

studied (Brakefield 2003; but see Hoffmann et al. 2003 for a counter-

example), genetic constraints can limit variation for some combina-

tions of traits, making some phenotypes inaccessible to selection

(Blows & Hoffmann 2005; Kirkpatrick 2009; Walsh & Blows 2009).

For example, Etterson & Shaw (2001) found negative genetic

correlations between traits that were under positive correlational

selective pressures in an annual plant, which were predicted to slow

adaptation to climate warming, as compared to univariate predictions.

A review of empirical studies, however, shows that genetic correla-

tions seem to help adaptation almost as often as they delay it (Agrawal

& Stinchcombe 2009).

Spatial heterogeneity may also constrain species ranges (Garcı́a-

Ramos & Kirkpatrick 1997; Kirkpatrick & Barton 1997) because it

leads to heterogeneous population density across the range. This

generates asymmetric gene flow from central, dense populations
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towards peripheral populations with lower density. Such genetic

swamping of peripheral populations may in turn prevent adaptation at

the edge of the distribution range, and stop the expansion of the

species. Even though the demographic importance of this migration

load is unknown in natural settings (Sexton et al. 2009), empirical

studies show that high migration rates prevent local adaptation, at

least along steep gradients (e.g. Bridle et al. 2009). Along a constant

linear environmental gradient, a cline is predicted to develop in the

trait. If the gradient is sufficiently steep, the species has a finite range,

which becomes smaller as genetic variance gets lower and ⁄ or the

environmental gradient steeper (Kirkpatrick & Barton 1997). When

the phenotypic optimum also changes linearly in time, the trait is still

predicted to form a linear cline. If the change in time is sufficiently

slow such that the species does not go extinct, its spatial distribution

shifts, tracking the location where fitness is maximal (Pease et al.

1989). These results are not qualitatively altered by density regulation

(Polechová et al. 2009). All these models, however, consider the

adaptation of a single trait to changing environments. Herein, we

address whether and how multivariate genetic constraints alter these

predictions.

Our aim herein is to investigate the joint effects of multivariate

genetic constraints and gene swamping on the demography and

adaptation of a species faced with shifting environmental gradients.

Building on the model by Pease et al. (1989), we focus on the

evolutionary and demographical effects of (1) the temporally and

spatially varying adaptive landscape, (2) multivariate genetic con-

straints and (3) dispersal abilities. We derive simple analytic

approximations for the dynamics of trait means, the species� growth

rate, the relative width of its distributional range, and the geographical

lag in time between the location where fitness is maximal and that

where population density is maximal. We show that the species�
persistence and geographical range are maximised when the spatial

selection gradient, the direction of weakest stabilising selection and the

direction of strongest genetic variance are aligned in phenotypic space.

Our model generalises previous theory about species range evolution

to the case of multivariate selection, and thus offers new opportunities

for empiricists to quantify the constraints limiting adaptive responses

to climate change in spatial context.

THE MODEL

A species inhabits a continuous landscape that varies along a single

spatial dimension x. Its fitness is determined by d traits. The phenotype

of a given individual at spatial location x and time t is denoted by vector

z (x,t ), and the average trait value at location x and time t is �zðx; tÞ. The

genetic covariance matrix G and phenotypic covariance matrix P are

both assumed constant in time and space. Phenotypes and breeding

values are assumed to be multivariate normally distributed. The

notation used in this article is summarised in Table 1.

Individual dispersal mimics an unbiased diffusive process with

constant diffusion rate r. In ecological terms, r2 is the mean squared

dispersal distance per unit time. The optimal phenotype changes

linearly in space and in time (e.g. due to shifting latitudinal gradients in

temperature, precipitation, resource availability). The vector of the

slopes of these spatial gradients is denoted b, and shifts in time at

speed v (e.g. due to climatic change). The units of measurement of

trait, space and time are scaled so that the optimal phenotype is 0 at

time t = 0 and spatial location x = 0. The optimal phenotype at

location x and time t is thus b (x ) vt ).

The fitness (that is, the intrinsic rate of increase) for an optimal

phenotype is r0, and fitness decreases quadratically as z deviates from

that optimum:

r z; x; tð Þ ¼ r0 �
1

2
z� b x � vtð Þ½ �TW�1 z� b x � vtð Þ½ � ð1Þ

Table 1 Notations used in this article and their dimensions

Notation Designation in the text Dimension

x Space [x]

t Time [t ]

v Rightward speed of the gradient shift (negative values indicate leftwards shift). By convention, positive values are used in this article [x] [t ])1

�r x; tð Þ Mean fitness [t])1

r0 Rate of increase of an optimally adapted phenotype [t])1

�zðx; tÞ Mean trait value [1-trait equivalent: �zðx; tÞ] [z ]

n(x,t) Population density –

b Environmental gradient of optimal trait values (1-trait equivalent: b) [z ] [x])1

r2 Variance of dispersal rate [x]2 [t ]) 1

P Phenotypic covariance matrix. Assumed proportional to G in simulations (1-trait equivalent: VP) [z ]2

G Genetic variance matrix. 1-trait equivalent: VG

Can be decomposed in
Pd
i¼1

kGi
eGi
; where eGi

ð Þ form an orthonormal basis of Rd

[z ]2

W)1 Inverse of selection variance matrix: matrix of selection coefficients (1-trait equivalent: 1 ⁄ VS)

Can be decomposed in
Pd
i¼1

kW�1
i

eW�1
i
; where eW�1

i

� �
form an orthonormal basis of Rd

[z ])2 [t ])1

b Selection gradient, b ¼ W�1 �z� b x � vtð Þð Þ [z ])1 [t ])1

bx Spatial selection gradient, bx = W)1b [z ])1 [t ])1 [x])1

/ Multitrait adaptive potential / ¼ bT
x G bx (1-trait equivalent: /1 ¼ b2 VG=V 2

S Þ [x ])2 [t ])2

w Spatial fitness contrast w ¼ bTW�1b (1-trait equivalent: w1 = b2 ⁄ VS) [x])2 [t ])1

Vn Proxy for the squared relative width of the distributional range [x]2

q Overall growth rate of the population [t ])1

vc Critical speed of change above which the population will go extinct (q < 0) [x ] [t ])1

Ln Geographical lag between the location where fitness is maximal (x = vt) and the mode of population density [x ]

s Slopes of realised trait means (1-trait equivalent: s) [z ] [x ])1
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W)1 is the symmetric positive-definite matrix describing the stabilising

selection gradients. W)1 = )c in the Lande-Arnold formulation

(Lande & Arnold 1983; see also eqns (3) in Phillips & Arnold 1989;

and (1a) in Stinchcombe et al. 2008). The diagonal elements of W

measure the intensity of stabilising selection on the variances of each

trait, with large values corresponding to weak selection, whereas its

off-diagonal elements measure correlational selection on pairs of

traits, i.e. selection for optimal combinations of trait values. Large

diagonal entries in W therefore denote traits for which large variance

does not incur large fitness costs.

The mean population fitness, �r , is found by integrating over the

phenotypic distribution, which gives:

�r �z; x; tð Þ ¼ r0 �
1

2
Tr W�1 P
� �

� 1

2
�z� b x � vtð Þ½ �T W�1 �z� b x � vtð Þ½ � ð2Þ

where Tr () is the trace operator. Tr W�1Pð Þ=2 represents the fitness

load that results from variation of phenotypes around the mean. The

last term in eqn (1) denotes the mean loss of fitness at location x and

time t, due to maladaptation: at a given point in space and time, fitness

will be lowered all the more as �z x; tð Þ differs from the local pheno-

typic optimum b x � vtð Þ. Since this optimum varies in time, the fit-

ness of a given mean phenotype will vary in time at any given location

(Fig. 1c). The fitness function above (eqn 2) is the multivariate

equivalent to those used in univariate models, except that density is

unregulated (unlike in Kirkpatrick & Barton 1997; Polechová et al.

2009). The fitness formula in Pease et al. (1989) can be reformulated in

a similar way, with an additional term linked to fitness loss due to bad

habitat quality. Namely, our model is equivalent to that of Pease et al.

(1989) with (in their notation) q = 1, m = 0; w22 and w11 tending to

infinity but keeping b ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w22=w11

p
and VS ¼ w22 1� q2ð Þ finite

(supporting information). Although our analytical model assumes no

density regulation, the effects of logistic density regulation are studied

through simulations in the supporting information.

Following univariate models (Pease et al. 1989; Kirkpatrick &

Barton 1997; Polechová et al. 2009), the dynamics of the population

density n (x,t) at point x and time t are then:

@n

@t
¼ r2

2

@2n

@x2
þ �r n ð3Þ

The first term of the right-hand side of eqn (3) represents diffusion

from high to low density regions; the second term results from the net

growth of the local population, depending directly on the matching

between mean and optimum phenotypes (eqn 2). The dynamics of the

vector of trait means are (multivariate extension of Pease et al. 1989):

@�z

@t
¼ r2

2

@2�z

@x2
þ r2 @ lnðnÞ

@x

@�z

@x
þ G b ð4Þ

where b is the selection gradient (that is, the vector of partial deriv-

atives of �r with respect to �z : b ¼ W�1 b x � vtð Þ � �z x; tð Þ½ �Þ. The

first term of the right-hand side of eqn (4) represents the homoge-

neous diffusion of individuals with different trait values along the

spatial axis; the second term reflects asymmetrical gene flow, with

regions of higher population density sending more migrants towards

regions of lower density. The third term corresponds to the response

to multivariate selection through genetic adaptation. In spatially

homogeneous environments, only this latter term remains, and the

traits evolve according to the multivariate breeder�s equation (Lande &

Arnold 1983). For a population whose mean trait value remains

constant across space and time ð�z x; tð Þ ¼ 0Þ;W�1b measures how

the selection gradient varies through space. Hereafter, W)1b will be

referred to as �the spatial selection gradient�, and noted bx.

RESULTS

Population density and adaptation at steady state

The population reaches a dynamic equilibrium at which there is a

Gaussian distribution of densities in space, and all traits show linear

clines travelling at the same speed as the environmental shift (Fig. 1;

supporting information). This bubble of density moves as a travelling

wave described by:

n x; tð Þ ¼ exp q t � x � vt � Lnð Þ2

2 Vn

� �
ð5Þ

While adaptation is described by:

�z x; tð Þ ¼ s x � vtð Þ ð6Þ
Population density is Gaussian with constant relative width 2

ffiffiffiffiffiffi
Vn

p

(Fig. 1d). Population density is maximal at a location where fitness is

low, but used to be high. This location lags behind the location of

(a)

(b)

(c)

(d)

Figure 1 Optimal (a) and realised (b) phenotypes, mean population growth rate (c)

and population density (d) across space and time x ) vt. On panels a and b, traits 1

and 2 are shown as solid and dashed lines respectively. A displacement towards the

left corresponds either to moving in space in a direction opposite to that of the

shifting optima, or forwards in time. For example, individuals now located at

x = Ln + vt (vertical dotted line) have a low fitness, but maximal density, because

they experienced higher fitness in the past (when they were located closer to the

fitness optimum).
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current maximal fitness by Ln (Fig. 1c,d). The total size of the

population either grows or shrinks at an exponential rate given by q.

Even though the relative width remains constant, if the population

size grows (q > 0), the region hosting more than a given absolute

threshold of individuals will expand, whereas it will shrink if the

population shrinks (q < 0). Population size decreases towards the

leading edge (right-hand side) of the distribution because of dispersal

limitation, and towards the trailing edge (left-hand side) because of

maladaptation (Fig. 1a,b). Numerical integration of the system formed

by partial differential eqns (3 and 4) suggests that the following

solution is unique (supporting information).

To find simple expressions for the lag Ln, the relative range size Vn,

and the population growth rate q, we assume that

jjG W�1jj<<r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT W�1 b
p

. This situation is of interest because it

results in a limited geographical range; otherwise the species is able to

adapt everywhere (Kirkpatrick & Barton 1997; Polechová et al. 2009).

Under this �strong migration load� assumption, analytical approxima-

tions can be derived for the key variables q, Vn, Ln and s (supporting

information). All four of them depend on two key quantities (both

strictly positive scalars, as long as b „ 0). The first is /, which we

call the �adaptive potential�. It measures the population�s potential to

respond to selection, for a given deviation of local mean phenotype

from optimal phenotype:

/ ¼ bT
x G bx ð7Þ

The second key quantity is w, which we name the �spatial fitness

contrast�. It measures the loss of fitness per space unit for any given

phenotype:

w ¼ bTW�1b ð8Þ

The strong migration load approximation implies that /<<rw3=2

At steady state, the equilibrium for the trait means consists of linear

clines of slopes [eqn (9-13) are given as Taylor series approximations

to the first degree of /= r w3=2
� �

�:

s � G bx

r
ffiffiffiffi
w

p ð9Þ

(supporting information). With one trait, eqn (9) results in

s � VG= r
ffiffiffiffiffiffi
VS

p
ð Þ. For most if not all traits, the slopes of the clines

are generally much smaller in absolute value than are those of the optima

b. This leads to increasing maladaptation as x ) vt increases. Local

adaptation is favoured when fitness varies smoothly across space (low

w), but is countered by large dispersal because of the swamping effects

of gene flow. Because the trait clines and the population density

distribution move across space with the same speed v, the difference

between optimal trait value and mean trait value, averaged over all

populations across the range, stays constant in time.

An interesting implication of eqn (9) is that a �counter-gradient�
cline can develop whose slope is opposite in sign to the slope of its

environmental gradient. This can occur because of indirect selection

on negatively correlated traits: adaptation in one-trait causes another

to evolve away from its optimum. Even in the absence of genetic

correlations, however, a counter-gradient cline can develop if there is

strong correlational selection, driving the spatial selection gradient in a

direction of the multivariate space different to that of the optima b.

An example is shown in Fig. 2.

At steady state, the population growth rate is (supporting

information):

q � r0 �
1

2
Tr W�1 P
� �

þ r
ffiffiffiffi
w

p
þ v2

r2

� �
þ /

2 w
; ð10Þ

Equation (10) shows that the population growth rate will be

negative, and extinction will result, if the speed of the environmental

change exceeds:

vc � r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r0 � Tr W�1 Pð Þ � r

ffiffiffiffi
w

p
þ /

w

s
ð11Þ

Three types of fitness loads acting at the level of the whole range of

the species can be identified from eqns (10 and 11) (Polechová et al.

2009): Tr W�1 Pð Þ=2 is the standing phenotypic load (due to variation

around the optimal phenotype; univariate equivalent:

VP= 2VSð ÞÞ; r
ffiffiffiffi
w

p
=2 is the dispersal load (due to individuals moving

towards locations where they are maladapted; univariate equivalent:

rb= 2
ffiffiffiffiffiffi
VS

p
ð ÞÞ; and v2= 2 r2ð Þ is the lag load (due to the temporal

shift of the environment). The population growth rate and the

sustainable rate of change increase as the fitness gain through

adaptation /= 2wð Þ increases, i.e. when the potential for adaptation is

large and the spatial fitness contrast is low. Equation (11) shows that

dispersal r will help the population escape the environmental change

(r term before the square root), but will decrease local adaptation

(r
ffiffiffiffi
w

p
term): the sustainable rate of change is maximised for

intermediate dispersal.

The square of the relative range width is (supporting information):

Vn �
1ffiffiffiffi
w

p rþ /

w3=2

 !
: ð12Þ

The distributional range is thus wider when the adaptive potential /
increases and when dispersal r increases. This increase due to

dispersal is lower than would be expected from diffusion only, due to

genetic swamping (Kirkpatrick & Barton 1997). The range contracts

as spatial fitness contrast w increases. When the gradient is gentle and

genetic adaptation is large, Vn can grow towards infinity, leading to an

unlimited range, as observed by Kirkpatrick & Barton (1997) and

Polechová et al. (2009), and as is also true in Pease et al. (1989;

supporting information).

The geographical lag between the locations of maximal fitness and

of maximal population density can be approximated by:

Figure 2 Realised trait slopes, as a function of genetic correlation. Fitness is

determined by two traits whose optima vary linearly in space with slope 1. In this

example trait 1 has more genetic variance and is under weaker stabilising selection

than trait 2, and correlational selection is positive. Although trait 2 (dashed line) can

never adapt completely, the slopes of the clines in trait 1 (solid line) can be either

opposite to that of the optimum (domain I), lower but of the expected sign (domain

II) or even higher (domain III). The width of each of these domains depends on

correlational selection. Parameters used: bT ¼ 1; 1ð Þ; elements of W are

w11 = 1000, w22 = 10 and w12 = 20; and elements of G are g11 = 1, g22 = 0.005.
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Ln � �
v

r
ffiffiffiffi
w

p 1þ /

rw3=2

 !
; ð13Þ

Just like the relative width of the range, this lag widens when the

gradient is shallow with high adaptive potential. In other words, the

peak of population density occurs further from the location of optimal

adaptation when the fitness cost resulting from being maladapted is

low (low w), or can be countered by genetic adaptation (high /). The

lag is proportional to the speed of the shift of the gradient (v), and

decreases when dispersal (r) is large, enabling the species to track its

optimum more closely.

The accuracy of our approximations for s, q, Vn and Ln was tested

for 100 000 random combinations of parameters, half with d = 2

traits and half with d = 5 traits (supporting information). Approxi-

mations for q, Ln, and Vn always lie within 5% of the exact values as

long as e ¼ jjG W�1jj = r
ffiffiffiffi
w

p� �
<10�1 (approximations for s lie within

5% of the exact values when e < 10)2; supporting information). With

d = 5 traits, the effective dimensionality of matrices G and W)1 was

up to 4, with 95% of these matrices having fewer than two effective

dimensions (sensu Kirkpatrick 2009; 95% of the 2-trait matrices had

fewer than 1.7 effective dimensions). Regardless of the number of

traits measured, G-matrices for fitness-related traits seem to have

fewer than two effective dimensions (Kirkpatrick 2009). Our

simulated datasets therefore efficiently mimic real G-matrices, and

increasing the number of traits in our simulations would probably

have little effect, even though the dimensionality of matrix W)1 also

has to be taken into account.

A geometric interpretation

Demographic parameters and adaptation are maximised when the

potential to respond to selection / is maximal, and when the spatial

fitness contrast w is minimal. We can gain insight into how patterns of

multivariate selection and genetic variation affect the evolution of the

species� range, its growth rate and adaptation, by rewriting / and w
using the eigenvector decomposition of G and W)1 (as in e.g. Walsh

& Blows 2009). For a constant intensity of the spatial selection

gradient ||bx||, / can be written as (supporting information):

/ ¼ jjbx jj
2
Xd

i¼1

kGi
cos2 eGi

; bxð Þ ð14Þ

For a constant intensity of the change in optimum ||b||, w can be

written as (supporting information):

w ¼ jj bjj2
Xd

i¼1

kW�1
i

cos2 eW�1
i
; b

� �
ð15Þ

where kGi
and kW�1

i
are the ith eigenvalues of G and W)1 ordered

by decreasing values, eGi
and eW�1

i
are the corresponding eigen-

vectors, and cos (x, y) is the cosine of the angle between vectors x and

y.

Equation (14) and Fig. 3 show that, for a given strength of the

selection gradient ||bx||, the population�s potential to adapt to

changing conditions, measured by /, is maximised when genetic

variance is large (as indicated by large kG1
) in the direction of the

phenotypic space upon which selection is strongest

(cos2 eG1
; bxð Þ ¼ 1; i:e: eG1

parallel to the spatial selection gradient

bx).

Equation (15) and Fig. 4 show that, for a given intensity of the

change in optimum ||b||, the spatial fitness contrast w is minimised

when selection is weak (weak stabilising selection, translating into low

kW�1
i

, and weak directional selection, translating into low ||b||), and

when stabilising selection is weakest in the direction of the change in

optimum b.

Local adaptation increases, and all parameters of population density

are maximised, when the adaptive potential / is maximal, and when

the spatial fitness contrast w is minimal. This occurs when selection is

weak, genetic variance is large and occurs in the phenotypic direction

of bx (for a given ||bx||) and when the change in optimum occurs in

a phenotypic direction under weak stabilising selection (for a given

||b||). Figure 5 illustrates how the relative range width and the

sustainable rate of change vary, depending on the relative orientations

of the change in optimum and of the leading directions of genetic

Figure 3 Variation of the potential for multivariate adaptation /, as a function of the relative orientations of the spatial selection gradient and the leading direction of G (black

ellipses) in the phenotypic space (�z1; �z2). / is maximal when most genetic variance (as indicated by the long axis of G) is parallel to the spatial selection gradient bx, leading to

maximised adaptation and enhanced demography. bx follows from the environmental gradient (b, dashed line) and maximal stabilising selection (eW�1
1

, the direction of fastest

fitness losses, as shown by the isofitness curve in grey). v = 0.2, r = 1, r0 = 3; b ¼ 0:43

0:25

� �
;W�1 ¼ 1:10 0:56

0:56 0:50

� �
; kG1

¼ 0:18; kG2
¼ 0:02 on both panels; covariances in

G are )0.76 on left panel and 0.38 on right panel, leading to / = 0.0015 and / = 0.0107 respectively.
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Figure 4 Variation of the spatial fitness contrast w as a function of the relative orientations of the change in optimum b (dashed line) and the leading eigenvector of W)1

(black) in the phenotypic space. A fitness contour is plotted for two different times on the same panel. Holding ||b|| constant, weaker fitness costs result when stabilising

selection is weaker in the direction of b (left vs. right panels), leading to higher adaptation and demographic variables on left panel than on right panel. Fitness contours are

shown at t = x ⁄ v (black) and t = (x + Ln) ⁄ v (grey). v = 1, r = 1, r0 = 3, bT = (0.43, 0.25), kW�1
1
¼ 1; kW�1

2
¼ 0:1 on both panels; covariances in W)1 are 0.58 on left panel

and )0.78 on right panel, leading to varying values of w (respectively 0.04 and 0.08).

π/2

π/3

π/2

π/3

π/3 π/3
–π/2 –π/2

π π

θb θb

θG θG

(a) (b)

(c) (d)

Figure 5 Demographic variables as a function of the orientations of b (hb, ordinates) and of the leading eigenvector of G (hG, abscissas) in the phenotypic space (panels a and

b; these angles are defined on panel c). Lighter shades indicate higher values. The relative orientations of b (grey), G (black) and W)1 (grey) are shown for four points on panel

d (see main text; w is lowest in A and B and highest for C and D; / is higher in A and D than in B and C). jjbjj; kGi
and W�1 are fixed, and weakest stabilising selection

occurs in direction hW = p ⁄ 3 (longest axis of the fitness contours on panels c and d). ||b|| = 1; kG1
= 0.5, kG2

¼ 0:1, r0 = 0.1, r = 1, v = 0.01, P = 4 G and the

coefficients of W are w11 = 62.5, w22 = 87.5, w12 = 21.6.
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variance and stabilising selection. With the chosen settings (strong

migration load, weak adaptation), the relative width of the range is

much more sensitive to the spatial fitness contrast w than to the

potential for multivariate adaptation /. Widest ranges appear, as

expected, when the change in optimum occurs in the direction upon

weakest stabilising selection, and when genetic variance is maximally

available in the direction of the spatial selection gradient (Fig. 5, point

A). A similar pattern is observed for the sustainable speed of change

(and for the growth rate), as long as the standing load is not too high.

The sustainable speed of change is strongly affected by the migration

load, and narrow ranges may not be indicative of populations at

maximal risk from a given change (compare points C and D in Fig. 5).

DISCUSSION

Our model extends previous models developed in univariate settings

(Pease et al. 1989; Polechová et al. 2009) and underlines the need to

take multivariate interactions into account when assessing the capacity

of a species to persist in a changing environment. Genetic correlations

and the structure of selection (directional, stabilising and correlational)

strongly affect the demography and the adaptive potential of species

faced with environmental change. If they avoid extinction, popula-

tions will track their environmental optimum, all the more closely

when dispersal is large compared to the speed of the shift, when the

change in selection across space and time bx occurs in a direction of

the multivariate phenotypic space where genetic variance is widely

available, and when stabilising selection pressures are weak in the

multivariate direction of the change in optimum b. These conditions

also maximise the relative width of the range of the species and the lag

it can sustain while tracking its optimal environment. If the standing

phenotypic load is low, these conditions also maximise the species�
growth rate.

How multivariate constraints modify univariate predictions

The addition of multivariate constraints in a spatial demo-genetic

model of species adapting to environmental change generalises results

of earlier univariate models. Qualitatively, our model recovers the

predictions of univariate models with no or logistic regulation of

population density (Pease et al. 1989; Kirkpatrick & Barton 1997;

Polechová et al. 2009). Quantitatively, setting d = 1 trait, we recover

all results found in the univariate no-regulation model of Pease et al.

(1989) and, when also setting v = 0, in the univariate logistic

regulation model of Kirkpatrick & Barton (1997); supporting

information).

Multivariate constraints do not modify the prediction that the

fastest changes can be sustained for intermediate rates of dispersal,

which minimise maladaptation in peripheral populations, while

allowing the species to track its fitness optimum across space. This

has also been observed in univariate models taking genetic drift into

account, because intermediate rates of migration minimise both the

swamping effects of gene flow and the depletion in genetic variance

due to drift in peripheral populations (Alleaume-Benharira et al. 2006).

In multivariate settings, however, wide ranges and efficient

adaptation depend not only upon the magnitudes, but also on the

relative orientations in the trait space, of genetic (co)variance,

correlational and stabilising selection, and the change in optimum.

Adaptation is promoted by the availability of genetic variance in the

direction of the selection gradient (e.g. Lande & Arnold 1983; Blows

et al. 2004; Hellmann & Pineda-Krch 2007). When environmental

gradients are steep, however, we show that it is of utmost importance

for the persistence of the population that the change in optimum

occurs in a direction that is under weak stabilising selection. We

predict that the fastest changes can be sustained for intermediate rates

of dispersal, which minimise maladaptation in peripheral populations,

although allowing the species to track its fitness optimum across

space. Our model emphasises the importance of environmental

change occurring in a direction of the multivariate space upon which

stabilising selection is weak. This is probably not always the case in

nature. For example, phenological traits may be under strong

stabilising selection, yet have to evolve fast in the face of climatic

change. Plasticity may help species cope with changes, at least for

some time (e.g. Charmantier et al. 2008).

For a species faced with a constant stress due to climate change (b,

W)1 and hence w constant), persistence will be easier to achieve if

fitness relies on few traits with large genetic variance, rather than on

numerous traits that share the same total amount of variance, because

the multivariate potential for adaptation / is bounded above by

jjbx jj2 kGmax
(supporting information).

The existence of genetic correlations and ⁄ or correlational selection

can constrain some traits to evolve in the opposite direction to that

predicted from single trait studies (Lande 1979; Guillaume 2011). This

may occur when both traits are selected in the same direction, but have

negative genetic correlation. Whether or not the slope of one trait si

will be of a sign opposite to that of the change in optimum for that

trait (bi) will depend upon the relative orientations of G and bx, and

also of bx and b in the trait space. This will rely on both genetic

correlations and correlational selection: in the absence of correlational

selection, genetic covariances between traits may drive a few of them

to develop counter-gradient clines; and in the absence of genetic

correlations, correlational selection may drive bx to point towards a

different quadrant of the trait space than does vector b, thus

generating counter-gradient clines for some traits (Fig. 2). The clines

observed in nature (or in a common garden) for a focal trait thus might

not reflect the direction of the environmental gradient (e.g. Levins

1968). This can occur if an unmeasured trait is genetically correlated to

the focal trait and is under stronger selection than the focal trait.

Robustness of model assumptions

Even though density is not regulated in our model, when there is a

single trait and the gradient does not shift, our approximations for the

relative range width and the slope of the trait mean are consistent with

those found by Kirkpatrick & Barton (1997), in a model that includes

logistic density regulation. This happens because range expansions rely

on the shape of population density at the edges of the distribution,

which is not modified by logistic density regulation. Numerical

integration of eqns (3 and 4) with logistic density dependence showed

critical rates of change that were very close to those found without

density regulation (eqn11; supporting information). Our model thus

seems robust to the addition of logistic density regulation, the only

noticeable difference induced by logistic density regulation being the

appearance of lags in trait means, in fast-changing environments (large

v). When density regulation has a different shape, however, the role of

migration in limiting adaptation (Filin et al. 2008) and the speed of the

travelling wave may be modified (Polechová et al. 2009).

To derive our approximations, we assumed that the migration load

strongly exceeded the fitness gain through genetic adaptation

Letter Multivariate adaptation and range shifts 257

� 2012 Blackwell Publishing Ltd/CNRS



(/<<r w3=2). When the environmental gradient is shallow, stabilising

selection is weak and ⁄ or genetic variance very large, this assumption is

no longer true. Depending on the slopes of the environmental

gradient, two regimes are possible in univariate models: limited

adaptation with a limited range, and perfect adaptation with an

unlimited range. When several traits are considered, this latter regime

appears when rw3=2</ (as in one-trait models; Kirkpatrick & Barton

1997; Polechová et al. 2009; Bridle et al. 2010). Our approximations do

not hold in these situations. Situations where migration or environ-

mental heterogeneity are null, and where adaptation is thus constant

across space, are described by the models of Lynch & Lande (1993),

Lande & Shannon (1996) and Gomulkiewicz & Houle (2009), which

hold for panmictic populations inhabiting a spatially homogeneous

landscape.

Extensions to this model

Our model makes the strong assumptions that selective pressures,

environmental change and genetic variance are constant across space

and time. These assumptions could be lifted through simulation

studies, to better reflect the variations of selective pressures observed

in natural settings. To accurately predict how a species can respond to

environmental change, the next challenge is to quantify how genetic

variances may evolve. Univariate models of adaptation along

environmental gradients suggest that evolving genetic variances

inflated by migration between divergent populations could readily

lead to perfect adaptation (and unlimited ranges; Barton 2001;

Guillaume & Whitlock 2007; Polechová et al. 2009). In the absence of

strong genetic constraints, the G matrix is moreover predicted to

evolve to align with the adaptive landscape (Blows et al. 2004; Jones

et al. 2004; Guillaume & Whitlock 2007; Arnold et al. 2008), which

may also facilitate adaptation in multivariate settings as considered in

our model.

A further perspective is to consider that environmental gradients

may not be linear, and most species certainly do not perceive their

environments as continuous throughout their ranges. Another

extension would be to allow the gradients to shift in time at different

speeds (e.g. to account for different speeds of change in temperature

and precipitation, ultimately leading to climates that have no current

analogue). Indeed, if all gradients travel at the same speed, as

presented above, this means that future environmental conditions are

already represented at some point in space: in our model, environ-

mental change cannot favour trait combinations that are not optimal

currently at some point in space.

Making predictions in nature

Even though our model strongly simplifies natural processes, it can be

used to predict whether or not a species is likely to sustain

environmental change, provided that the prominent parameters can

be estimated. The dispersal variance r2 (the variance of parent-

offspring distance divided by generation time) can be estimated from

genetic data (Broquet & Petit 2009). The speed of shift of the

environmental gradient v can be estimated either from long-term

measures of traits of given populations in the field, or from climatic

projections. The shape of the fitness function can be estimated through

regression of fitness over the traits (Lande & Arnold 1983; Schluter &

Nychka 1994; Gimenez et al. 2009). Our model assumes that the

variation of all traits relevant to fitness was captured. Vector b can be

estimated by comparing the fitness of a given population in different

environments spanning the range of the species (by reciprocal transfer

experiments, for example). Snapshot observations of natural clines,

however, are not liable to yield accurate estimates of b, because clines

may show slopes that are not representative of b, if genetic correlations

and ⁄ or correlational selection exist (see above). Thus, comparing

different phenotypes for each trait, in each environment (and ideally

manipulating them) would lead to more accurate estimations of b,

because the optimal phenotype could be derived readily for each trait in

each environment. Alternatively, process-based models such as

Phenofit (Chuine & Beaubien 2001) could be used to relate variation

in traits (such as budburst date) to fitness.

If these estimates are roughly constant across locations, our model

can be used to infer how likely it is that the species adapts and ⁄ or

migrates to escape climate change. Numerous factors that are not

considered in our model (notably habitat patchiness and biotic

interactions; Case & Taper 2000; Gaston 2003; Goldberg & Lande

2006; Price & Kirkpatrick 2009) are likely to reduce the actual shift in

range and the actual level of adaptation that the species might achieve.

Nevertheless, our model can still be used to predict the optimistic

expected outcome of environmental change on local populations,

provided relevant traits are measured.

To predict whether or not species can track their optimum, we

therefore need accurate estimations of the selective pressures

stemming from environmental change, and quantification of the

genetic and demographic constraints (Gomulkiewicz & Houle 2009).

Importantly, given that genetic correlations are omnipresent in nature

and that selection is intrinsically multivariate, studies aiming at

predicting species response to environmental change should strive to

include many traits to increase their predictive power.
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Gimenez, O., Grégoire, A. & Lenormand, T. (2009). Estimating and visualizing

fitness surfaces using mark-recapture data. Evolution, 63, 3097–3105.

Goldberg, E.E. & Lande, R. (2006). Ecological and reproductive character dis-

placement on an environmental gradient. Evolution, 60, 1344–1357.

Gomulkiewicz, R. & Houle, D. (2009). Demographic and genetic constraints on

evolution. Am. Nat., 174, E218–E229.

Guillaume, F. (2011). Migration-induced phenotypic divergence: the migration-

selection balance of correlated traits. Evolution, 65, 1723–1738.

Guillaume, F. & Whitlock, M.C. (2007). Effects of migration on the genetic

covariance matrix. Evolution, 61, 2398–2409.

Hellmann, J.J. & Pineda-Krch, M. (2007). Constraints and reinforcement on

adaptation under climate change: selection of genetically correlated traits. Biol.

Conserv., 137, 599–609.

Hill, J.K., Griffiths, H.M. & Thomas, C.D. (2011). Climate change and evolutionary

adaptations at species� range margins. Annu. Rev. Entomol., 56, 143–159.
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